Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono, Science 289(5481), 930 (2000).
2. A. A. Thiele, Phys. Rev. Lett. 30(6), 230 (1973).
3. B. Van Waeyenberge, A. Puzic, H. Stoll, K. W. Chou, T. Tyliszczak, R. Hertel, M. Fahnle, H. Bruckl, K. Rott, G. Reiss, I. Neudecker, D. Weiss, C. H. Back, and G. Schutz, Nature 444(7118), 461 (2006).
4. M. Curcic, B. Van Waeyenberge, A. Vansteenkiste, M. Weigand, V. Sackmann, H. Stoll, M. Fähnle, T. Tyliszczak, G. Woltersdorf, C. H. Back, and G. Schütz, Phys. Rev. Lett. 101(19), 197204 (2008).
5. M. Curcic, H. Stoll, M. Weigand, V. Sackmann, P. Juellig, M. Kammerer, M. Noske, M. Sproll, B. Van Waeyenberge, A. Vansteenkiste, G. Woltersdorf, T. Tyliszczak, and G. Schütz, Phys. Status Solidi B 248(10), 2317 (2011).
6. N. Qureshi, H. Schmidt, and A. R. Hawkins, Appl. Phys. Lett. 85(3), 431 (2004);
6. U. J. Gibson, L. F. Holiday, D. A. Allwood, S. Basu, and P. W. Fry, IEEE Trans. Magn. 43(6), 2740 (2007).
7.See supplementary material at for an estimation of the expected change in the polar Kerr signal, a discussion in which effects other than vortex core switching are ruled out and results of additional micromagnetic simulations with a Gilbert damping parameter of α = 0.015.[Supplementary Material]
8. A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. Van Waeyenberge, AIP Adv. 4(10), 107133 (2014).
9. T. Weindler, H. G. Bauer, R. Islinger, B. Boehm, J. Y. Chauleau, and C. H. Back, Phys. Rev. Lett. 113(23), 237204 (2014).
10.A Gilbert damping parameter of α = 0.0072 has been measured in Ref. 9 in Permalloy films prepared in the same deposition chamber.
11. K. Yu Guslienko, K.-S. Lee, and S.-K. Kim, Phys. Rev. Lett. 100(2), 027203 (2008).
12. M. Noske, A. Gangwar, H. Stoll, M. Kammerer, M. Sproll, G. Dieterle, M. Weigand, M. Fähnle, G. Woltersdorf, C. H. Back, and G. Schütz, Phys. Rev. B 90(10), 104415 (2014);
12. A. Thiaville, J. M. García, R. Dittrich, J. Miltat, and T. Schrefl, Phys. Rev. B 67(9), 094410 (2003).
13. A. Vansteenkiste, M. Weigand, M. Curcic, H. Stoll, G. Schütz, and B. Van Waeyenberge, New J. Phys. 11(6), 063006 (2009).
14. K. Kuepper, L. Bischoff, Ch. Akhmadaliev, J. Fassbender, H. Stoll, K. W. Chou, A. Puzic, K. Fauth, D. Dolgos, G. Schütz, B. Van Waeyenberge, T. Tyliszczak, I. Neudecker, G. Woltersdorf, and C. H. Back, Appl. Phys. Lett. 90(6), 062506 (2007).

Data & Media loading...


Article metrics loading...



We have studied vortex core reversal in a single submicron Permalloy disk by polar Kerr microscopy. A sophisticated lock-in-technique based on repetitive switching of the magnetic vortex core and a continuous calibration allows for a reliable determination of the switching probability. This highly sensitive method facilitates the detection of a change in the magnetic moment of the tiny magnetic vortex core which is about 1.5 × 10−17 A m2. We have investigated vortex core switching caused by excitation of the vortex core gyromode with varying frequencies and amplitudes. The frequency range in which switching occurs was found to broaden with increasing excitation amplitude, whereby the highest frequency in this range shifts stronger to higher frequencies than the lowest frequency to lower frequencies. The experimental results are in good agreement with micromagnetic simulations.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd