Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/108/2/10.1063/1.4939853
1.
1. X. J. Zheng, Y. C. Zhou, and J. Y. Li, Acta Mater. 51, 3985 (2003).
http://dx.doi.org/10.1016/S1359-6454(03)00208-8
2.
2. C. Tromas, J. C. Girard, V. Audurier, and J. Woirgard, J. Mater. Sci. 34, 5337 (1999).
http://dx.doi.org/10.1023/A:1004705206482
3.
3. P. Franciosi, L. T. Le, G. Monnet, C. Kahloun, and M.-H. Chavanne, Int. J. Plast. 65, 226 (2015).
http://dx.doi.org/10.1016/j.ijplas.2014.09.008
4.
4. Y. Liu, S. Varghese, J. Ma, M. Yoshino, H. Lu, and R. Komanduri, Int. J. Plast. 24, 1990 (2008).
http://dx.doi.org/10.1016/j.ijplas.2008.02.009
5.
5. T. Namazu, Y. Isono, and T. Tanaka, J. Microelectromech. Syst. 11, 125 (2002).
http://dx.doi.org/10.1109/84.993447
6.
6. A. Schwab, O. Meissner, and C. Holste, Philos. Mag. Lett. 77, 23 (1998).
http://dx.doi.org/10.1080/095008398178732
7.
7. D. E. Kramer, M. F. Savage, and L. E. Levine, Acta Mater. 53, 4655 (2005).
http://dx.doi.org/10.1016/j.actamat.2005.06.019
8.
8. P. M. Solomon, B. A. Bryce, M. A. Kuroda, R. Keech, S. Shetty, T. M. Shaw, M. Copel, L.-W. Hung, A. G. Schrott, and C. Armstrong, Nano Lett. 15, 2391 (2015).
http://dx.doi.org/10.1021/nl5046796
9.
9. E. K. H. Salje, Annu. Rev. Mater. Res. 42, 265 (2012).
http://dx.doi.org/10.1146/annurev-matsci-070511-155022
10.
10. E. K. H. Salje, A. Graeme-Barber, M. A. Carpenter, and U. Bismayer, Acta Crystallogr. B 49, 387 (1993).
http://dx.doi.org/10.1107/S0108768192008127
11.
11. U. Bismayer and E. K. H. Salje, Acta Crystallogr. A 37, 145 (1981).
http://dx.doi.org/10.1107/S0567739481000417
12.
12. U. Bismayer, J. Hensler, E. K. H. Salje, and B. Güttler, Phase Transitions 48, 149 (1994).
http://dx.doi.org/10.1080/01411599408200358
13.
13. E. K. H. Salje and B. Wruck, Phys. Rev. B 28, 6510 (1983).
http://dx.doi.org/10.1103/PhysRevB.28.6510
14.
14. D. Bosbach, A. Putnis, U. Bismayer, and B. Güttler, J. Phys.: Condens. Matter 9, 8397 (1997).
http://dx.doi.org/10.1088/0953-8984/9/40/007
15.
15. E. K. H. Salje, X. Ding, Z. Zhao, T. Lookman, and A. Saxena, Phys. Rev. B 83, 104109 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.104109
16.
16. X. Ding, T. Lookman, Z. Zhao, A. Saxena, J. Sun, and E. K. H. Salje, Phys. Rev. B 87, 094109 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.094109
17.
17. S. Nosé, J. Chem. Phys. 81, 511 (1984).
http://dx.doi.org/10.1063/1.447334
18.
18. W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
19.
19. S. Plimpton, J. Comput. Phys. 117, 1 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
20.
20. J. Novak, U. Bismayer, and E. K. H. Salje, J. Phys.: Condens. Matter 14, 657 (2002).
http://dx.doi.org/10.1088/0953-8984/14/3/332
21.
21. E. K. H. Salje and Y. Ishibashi, J. Phys.: Condens. Matter 8, 8477 (1996).
http://dx.doi.org/10.1088/0953-8984/8/44/004
22.
22. J. Novak and E. K. H. Salje, J. Phys.: Condens. Matter 10, L359 (1998).
http://dx.doi.org/10.1088/0953-8984/10/21/005
http://aip.metastore.ingenta.com/content/aip/journal/apl/108/2/10.1063/1.4939853
Loading
/content/aip/journal/apl/108/2/10.1063/1.4939853
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/108/2/10.1063/1.4939853
2016-01-11
2016-12-07

Abstract

We report shear bands as a precursor structure of deformation twinning in Pb(PO). Atomic force microscopy shows “slip-line” like traces on the surface of untwinned regions of the sample. The traces are shear bands oriented along twin boundaries of the ferroelastic-C2/c transition. Computer simulations reproduce the shear band patterns and show that each shear band is a precursor embryo of a twin wall that forms under higher shear stress. This observation reveals the structural origin of twin boundaries under stress conditions just before ferroelastic switching occurs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/108/2/1.4939853.html;jsessionid=ozlbAzWnG91Pgig3m-a9R2Jj.x-aip-live-03?itemId=/content/aip/journal/apl/108/2/10.1063/1.4939853&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/108/2/10.1063/1.4939853&pageURL=http://scitation.aip.org/content/aip/journal/apl/108/2/10.1063/1.4939853'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,