Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/108/2/10.1063/1.4939913
1.
1. L. Esaki, Phys. Rev. 109, 603 (1958).
http://dx.doi.org/10.1103/PhysRev.109.603
2.
2. R. Tsu and L. Esaki, Appl. Phys. Lett. 22, 562 (1973).
http://dx.doi.org/10.1063/1.1654509
3.
3. E. F. Schubert, J. E. Cunningham, and W. T. Tsang, Appl. Phys. Lett. 51, 817 (1987).
http://dx.doi.org/10.1063/1.98822
4.
4. X. Zhu, X. Zheng, M. Pak, M. O. Tanner, and K. L. Wang, Appl. Phys. Lett. 71, 2190 (1997).
http://dx.doi.org/10.1063/1.119377
5.
5. S. R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968).
http://dx.doi.org/10.1103/PhysRevLett.21.1450
6.
6. D. Adler, M. S. Shur, M. Silver, and S. R. Ovshinsky, J. Appl. Phys. 51, 3289 (1980).
http://dx.doi.org/10.1063/1.328036
7.
7. A. Pirovano and A. L. Lacaita, IEEE Trans. Electron Devices 51, 452 (2004).
http://dx.doi.org/10.1109/TED.2003.823243
8.
8. D. Ielmini, Phys. Rev. B 78, 035308 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.035308
9.
9. L. O. Chua, J. Yu, and Y. Yu, IEEE Trans. Circuits Syst. 32, 46 (1985).
http://dx.doi.org/10.1109/TCS.1985.1085599
10.
10. H. Futaki, Jpn. J. Appl. Phys., Part 1 4, 28 (1965).
http://dx.doi.org/10.1143/JJAP.4.28
11.
11. R. G. Cope and A. W. Penn, J. Phys. D: Appl. Phys. 1, 161 (1968).
http://dx.doi.org/10.1088/0022-3727/1/2/304
12.
12. C. N. Berglund, IEEE Trans. Electron Devices 16, 432 (1969).
http://dx.doi.org/10.1109/T-ED.1969.16773
13.
13. J. Duchene, M. Terraillon, P. Pailly, and G. Adam, Appl. Phys. Lett. 19, 115 (1971).
http://dx.doi.org/10.1063/1.1653835
14.
14. H. T. Kim, B. J. Kim, S. Choi, B. G. Chae, Y. W. Lee, T. Driscoll, M. M. Qazilbash, and D. N. Basov, J. Appl. Phys. 107, 023702 (2010).
http://dx.doi.org/10.1063/1.3275575
15.
15. K. L. Chopra, Proc. IEEE 51, 941 (1963).
http://dx.doi.org/10.1109/PROC.1963.2339
16.
16. K. L. Chopra, J. Appl. Phys. 36, 184 (1965).
http://dx.doi.org/10.1063/1.1713870
17.
17. F. Argall, Solid-State Electron. 11, 535 (1968).
http://dx.doi.org/10.1016/0038-1101(68)90092-0
18.
18. R. J. Soukup, J. Appl. Phys. 43, 3431 (1972).
http://dx.doi.org/10.1063/1.1661733
19.
19. G. Taylor and B. Lalevic, J. Appl. Phys. 48, 4410 (1977).
http://dx.doi.org/10.1063/1.323400
20.
20. R. C. Morris, J. E. Christopher, and R. V. Coleman, Phys. Rev. 184, 565 (1969).
http://dx.doi.org/10.1103/PhysRev.184.565
21.
21. D. S. Jeong, H. Schroeder, and R. Waser, Electrochem. Solid-State Lett. 10, G51 (2007).
http://dx.doi.org/10.1149/1.2742989
22.
22. L. Goux, J. G. Lisoni, M. Jurczak, D. J. Wouters, L. Courtade, and Ch. Muller, J. Appl. Phys. 107, 024512 (2010).
http://dx.doi.org/10.1063/1.3275426
23.
23. M. D. Pickett, J. Borghetti, J. Joshua Yang, G. Medeiros-Ribeiro, and R. S. Williams, Adv. Mater. 23, 1730 (2011).
http://dx.doi.org/10.1002/adma.201004497
24.
24. Y. Fujisaki, Jpn. J. Appl. Phys., Part 1 52, 040001 (2013).
http://dx.doi.org/10.7567/JJAP.52.040001
25.
25. G. W. Burr, R. S. Shenoy, K. Virwani, P. Narayanan, A. Padilla, and B. Kurdi, J. Vac. Sci. Technol., B 32, 040802 (2014).
http://dx.doi.org/10.1116/1.4889999
26.
26. G. A. Gibson, “ General Conditions for Occurrence of Self-Heating Enabled Negative Differential Resistance” (to be published).
27.
27. F. A. Chudnovskii, L. L. Odynets, A. L. Pergaments, and G. B. Stefanovich, J. Solid State Chem. 122, 95 (1996).
http://dx.doi.org/10.1006/jssc.1996.0087
28.
28. X. Liu, S. Ma. Sadaf, M. Son, J. Park, J. Shin, W. Lee, K. Seo, D. Lee, and H. Hwang, IEEE Electron Device Lett. 33, 236 (2012).
http://dx.doi.org/10.1109/LED.2011.2174452
29.
29. M. D. Pickett and R. S. Williams, Nanotechnology 23, 215202 (2012).
http://dx.doi.org/10.1088/0957-4484/23/21/215202
30.
30. X. Liu, S. K. Nandi, D. K. Venkatachalam, K. Belay, S. Song, and R. G. Elliman, IEEE Electron Device Lett. 35, 1055 (2014).
http://dx.doi.org/10.1109/LED.2014.2344105
31.
31. M. Kang, S. Yu, and J. Son, J. Phys. D: Appl. Phys. 48, 095301 (2015).
http://dx.doi.org/10.1088/0022-3727/48/9/095301
32.
32. S. K. Nandi, X. Liu, D. K. Venkatachalam, and R. G. Elliman, J. Phys. D: Appl. Phys. 48, 195105 (2015).
http://dx.doi.org/10.1088/0022-3727/48/19/195105
33.
33. R. F. Jannick, J. Phys. Chem. Solids 27, 1183 (1966).
http://dx.doi.org/10.1016/0022-3697(66)90094-1
34.
34. J. Frenkel, Tech. Phys. USSR 5, 685 (1938);
34. J. Frenkel, Phys. Rev. 54, 647 (1938).
http://dx.doi.org/10.1103/PhysRev.54.647
35.
35. J. L. Hartke, J. Appl. Phys. 39, 4871 (1968).
http://dx.doi.org/10.1063/1.1655871
36.
36. P. L. Young, J. Appl. Phys. 47, 235 (1976).
http://dx.doi.org/10.1063/1.322354
37.
37. J. R. Yeargan and H. L. Taylor, J. Appl. Phys. 39, 5600 (1968).
http://dx.doi.org/10.1063/1.1656022
38.
38. P. Mark and T. E. Hartman, J. Appl. Phys. 39, 2163 (1968).
http://dx.doi.org/10.1063/1.1656519
39.
39. J. G. Simmons, Phys. Rev. 155, 657 (1967).
http://dx.doi.org/10.1103/PhysRev.155.657
40.
40. P. R. Emtage and W. Tantraporn, Phys. Rev. Lett. 8, 267 (1962).
http://dx.doi.org/10.1103/PhysRevLett.8.267
41.
41. L. Chua and S. Kang, Proc. IEEE 64, 209 (1976).
http://dx.doi.org/10.1109/PROC.1976.10092
42.
42. A. Ascoli, S. Slesazeck, H. Mähne, R. Tetzlaff, and T. Mikolajick, IEEE Trans. Circuits Syst. 62, 1165 (2015).
http://dx.doi.org/10.1109/TCSI.2015.2413152
43.
43. A. S. Alexandrov, A. M. Bratkovsky, B. Bridle, S. E. Savel'ev, and D. B. Strukov, Appl. Phys. Lett. 99, 202104 (2011).
http://dx.doi.org/10.1063/1.3660229
44.
44.See http://www.mmr-tech.com for MMR Technologies.
45.
45.See http://www.comsol.com for Comsol Multiphysics.
46.
46. N. van Hoornick, H. De Witte, T. Witters, C. Zhao, T. Conard, H. Huotari, J. Swerts, T. Schram, J. W. Maes, S. De Gendt, and M. Heyns, J. Electrochem. Soc. 153, G437 (2006).
http://dx.doi.org/10.1149/1.2181430
47.
47. L. Bolotov, K. Fukuda, T. Tada, T. Matsukawa, and M. Masahara, Jpn. J. Appl. Phys., Part 1 54, 04DA03 (2015).
http://dx.doi.org/10.7567/JJAP.54.04DA03
48.
48. W. Meyer and H. Neldel, Z. Tech. Phys. 12, 588 (1937).
49.
49. F. Abdel-Wahab and A. Yelon, J. Appl. Phys. 114, 023707 (2013).
http://dx.doi.org/10.1063/1.4813128
50.
50.See supplementary material at http://dx.doi.org/10.1063/1.4939913 for additional figures and discussion.[Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/apl/108/2/10.1063/1.4939913
Loading
/content/aip/journal/apl/108/2/10.1063/1.4939913
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/108/2/10.1063/1.4939913
2016-01-14
2016-12-06

Abstract

A number of important commercial applications would benefit from the introduction of easily manufactured devices that exhibit current-controlled, or “S-type,” negative differential resistance(NDR). A leading example is emerging non-volatile memory based on crossbar array architectures. Due to the inherently linear current vs. voltage characteristics of candidate non-volatile memristor memory elements, individual memory cells in these crossbar arrays can be addressed only if a highly non-linear circuit element, termed a “selector,” is incorporated in the cell. Selectors based on a layer of niobium oxide sandwiched between two electrodes have been investigated by a number of groups because the NDR they exhibit provides a promisingly large non-linearity. We have developed a highly accurate compact dynamical model for their electrical conduction that shows that the NDR in these devices results from a thermal feedback mechanism. A series of electrothermal measurements and numerical simulations corroborate this model. These results reveal that the leakage currents can be minimized by thermally isolating the selector or by incorporating materials with larger activation energies for electron motion.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/108/2/1.4939913.html;jsessionid=yTbrYy51qEfdsN9yQHQbqjtL.x-aip-live-03?itemId=/content/aip/journal/apl/108/2/10.1063/1.4939913&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/108/2/10.1063/1.4939913&pageURL=http://scitation.aip.org/content/aip/journal/apl/108/2/10.1063/1.4939913'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,