Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/108/22/10.1063/1.4952972
1.
A. C. Ferrari and J. Robertson, “ Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond,” Philos. Trans. R. Soc. London, Ser. A 362, 24772512 (2004).
http://dx.doi.org/10.1098/rsta.2004.1452
2.
J. Ado, M. Dresselhaus, S. Ricchiro, and G. Dresselhaus, Raman Spectroscopy in Graphene Related Systems ( Wiley-VCH Verlag, Germany, 2011).
3.
A. C. Ferrari and D. M. Basko, “ Raman spectroscopy as a versatile tool for studying the properties of graphene,” Nat. Nanotechnol. 8, 235246 (2013).
http://dx.doi.org/10.1038/nnano.2013.46
4.
C. Casiraghi, Spectroscopic Properties of Inorganic and Organometallic Compounds: Techniques, Materials and Applications ( The Royal Society of Chemistry, 2012), Vol. 43, pp. 2956.
5.
A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth et al., “ Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.187401
6.
V. Carozo, C. M. Almeida, E. H. Ferreira, L. G. Cancado, C. A. Achete, and A. Jorio, “ Raman signature of graphene superlattices,” Nano Lett. 11, 45274534 (2011).
http://dx.doi.org/10.1021/nl201370m
7.
A. Eckmann, J. Park, H. Yang, D. Elias, A. S. Mayorov, G. Yu, R. Jalil, K. S. Novoselov, R. V. Gorbachev, M. Lazzeri et al., “ Raman fingerprint of aligned graphene/h–BN superlattices,” Nano Lett. 13, 52425246 (2013).
http://dx.doi.org/10.1021/nl402679b
8.
C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K. S. Novoselov, D. M. Basko, and A. C. Ferrari, “ Raman spectroscopy of graphene edges,” Nano Lett. 9, 14331441 (2009).
http://dx.doi.org/10.1021/nl8032697
9.
S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, “ Breakdown of the adiabatic Born–Oppenheimer approximation in graphene,” Nat. Mater. 6, 198201 (2007).
http://dx.doi.org/10.1038/nmat1846
10.
A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K. S. Novoselov, and C. Casiraghi, “ Probing the nature of defects in graphene by Raman spectroscopy,” Nano Lett. 12, 39253930 (2012).
http://dx.doi.org/10.1021/nl300901a
11.
E. M. Ferreira, M. V. Moutinho, F. Stavale, M. Lucchese, R. B. Capaz, C. Achete, and A. Jorio, “ Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder,” Phys. Rev. B 82, 125429 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.125429
12.
L. G. Cançado, A. Jorio, E. M. Ferreira, F. Stavale, C. Achete, R. Capaz, M. Moutinho, A. Lombardo, T. Kulmala, and A. Ferrari, “ Quantifying defects in graphene via Raman spectroscopy at different excitation energies,” Nano Lett. 11, 31903196 (2011).
http://dx.doi.org/10.1021/nl201432g
13.
T. Mohiuddin, A. Lombardo, R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. Basko, C. Galiotis, and N. Marzari, “ Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation,” Phys. Rev. B 79, 205433 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.205433
14.
J. Zabel, R. R. Nair, A. Ott, T. Georgiou, A. K. Geim, K. S. Novoselov, and C. Casiraghi, “ Raman spectroscopy of graphene and bilayer under biaxial strain: Bubbles and balloons,” Nano Lett. 12, 617621 (2012).
http://dx.doi.org/10.1021/nl203359n
15.
E. V. Castro, H. Ochoa, M. Katsnelson, R. Gorbachev, D. Elias, K. Novoselov, A. Geim, and F. Guinea, “ Limits on charge carrier mobility in suspended graphene due to flexural phonons,” Phys. Rev. Lett. 105, 266601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.266601
16.
J. A. Robinson, M. Wetherington, J. L. Tedesco, P. M. Campbell, X. Weng, J. Stitt, M. A. Fanton, E. Frantz, D. Snyder, and B. L. VanMil, “ Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: A guide to achieving high mobility on the wafer scale,” Nano Lett. 9, 28732876 (2009).
http://dx.doi.org/10.1021/nl901073g
17.
C. R. Woods, L. Britnell, A. Eckmann, R. S. Ma, J. C. Lu, H. M. Guo, X. Lin, G. L. Yu, Y. Cao, R. V. Gorbachev et al., “ Commensurate–incommensurate transition in graphene on hexagonal boron nitride,” Nat. Phys. 10, 451456 (2014).
http://dx.doi.org/10.1038/nphys2954
18.
F. Guinea, M. I. Katsnelson, and A. K. Geim, “ Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering,” Nat. Phys. 6, 3033 (2010).
http://dx.doi.org/10.1038/nphys1420
19.
V. M. Pereira, A. C. Neto, and N. Peres, “ Tight-binding approach to uniaxial strain in graphene,” Phys. Rev. B 80, 045401 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.045401
20.
V. M. Pereira and A. C. Neto, “ Strain engineering of graphene's electronic structure,” Phys. Rev. Lett. 103, 046801 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.046801
21.
Y. Cheng, Z. Zhu, G. Huang, and U. Schwingenschlögl, “ Grüneisen parameter of the G mode of strained monolayer graphene,” Phys. Rev. B 83, 115449 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.115449
22.
W. Jie, Y. Y. Hui, Y. Zhang, S. P. Lau, and J. Hao, “ Effects of controllable biaxial strain on the Raman spectra of monolayer graphene prepared by chemical vapor deposition,” Appl. Phys. Lett. 102, 223112 (2013).
http://dx.doi.org/10.1063/1.4809922
23.
F. Ding, H. Ji, Y. Chen, A. Herklotz, K. Dörr, Y. Mei, A. Rastelli, and O. G. Schmidt, “ Stretchable graphene: A close look at fundamental parameters through biaxial straining,” Nano Lett. 10, 34533458 (2010).
http://dx.doi.org/10.1021/nl101533x
24.
C. Metzger, S. Remi, M. Liu, S. V. Kusminskiy, A. H. Castro Neto, A. K. Swan, and B. B. Goldberg, “ Biaxial strain in graphene adhered to shallow depressions,” Nano Lett. 10, 610 (2010).
http://dx.doi.org/10.1021/nl901625v
25.
R. Beams, L. G. Cancado, A. Jorio, A. N. Vamivakas, and L. Novotny, “ Tip-enhanced Raman mapping of local strain in graphene,” Nanotechnology 26, 175702 (2015).
http://dx.doi.org/10.1088/0957-4484/26/17/175702
26.
W. Pan, J. Xiao, J. Zhu, C. Yu, G. Zhang, Z. Ni, K. Watanabe, T. Taniguchi, Y. Shi, and X. Wang, “ Biaxial compressive strain engineering in graphene/boron nitride heterostructures,” Sci. Rep. 2, 893 (2012).
http://dx.doi.org/10.1038/srep00893
27.
J. Nicolle, D. Machon, P. Poncharal, O. Pierre-Louis, and A. San-Miguel, “ Pressure-mediated doping in graphene,” Nano Lett. 11, 35643568 (2011).
http://dx.doi.org/10.1021/nl201243c
28.
H. H. Perez Garza, E. W. Kievit, G. F. Schneider, and U. Staufer, “ Controlled, reversible, and nondestructive generation of uniaxial extreme strains (>10%) in graphene,” Nano Lett. 14, 41074113 (2014).
http://dx.doi.org/10.1021/nl5016848
29.
H. Tomori, A. Kanda, H. Goto, Y. Ootuka, K. Tsukagoshi, S. Moriyama, E. Watanabe, and D. Tsuya, “ Introducing nonuniform strain to graphene using dielectric nanopillars,” Appl. Phys. Express 4, 075102 (2011).
http://dx.doi.org/10.1143/APEX.4.075102
30.
R. R. Nair, P. Blake, J. R. Blake, R. Zan, S. Anissimova, U. Bangert, A. P. Golovanov, S. V. Morozov, A. K. Geim, K. S. Novoselov et al., “ Graphene as a transparent conductive support for studying biological molecules by transmission electron microscopy,” Appl. Phys. Lett. 97, 153102 (2010).
http://dx.doi.org/10.1063/1.3492845
31.
J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, “ Impermeable atomic membranes from graphene sheets,” Nano Lett. 8, 24582462 (2008).
http://dx.doi.org/10.1021/nl801457b
32.
H. Hencky, “ Uber den Spannungszustand in kreisrunden Platten mit verschwindender Biegungssteifigkeit,” Z. Math. Phys. 63, 311317 (1915).
33.
S. P. Koenig, N. G. Boddeti, M. L. Dunn, and J. S. Bunch, “ Ultrastrong adhesion of graphene membranes,” Nat. Nanotechnol. 6, 543546 (2011).
http://dx.doi.org/10.1038/nnano.2011.123
34.
S. Berciaud, S. Ryu, L. E. Brus, and T. F. Heinz, “ Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers,” Nano Lett. 9, 346352 (2009).
http://dx.doi.org/10.1021/nl8031444
35.
J. E. Lee, G. Ahn, J. Shim, Y. S. Lee, and S. Ryu, “ Optical separation of mechanical strain from charge doping in graphene,” Nat. Commun. 3, 1024 (2012).
http://dx.doi.org/10.1038/ncomms2022
36.
M. Mohr, J. Maultzsch, and C. Thomsen, “ Splitting of the Raman 2D band of graphene subjected to strain,” Phys. Rev. B 82, 201409 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.201409
37.
P. Venezuela, M. Lazzeri, and F. Mauri, “ Theory of double-resonant Raman spectra in graphene: Intensity and line shape of defect-induced and two-phonon bands,” Phys. Rev. B 84, 035433 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.035433
38.
C. Neumann, S. Reichardt, P. Venezuela, M. Drögeler, L. Banszerus, M. Schmitz, K. Watanabe, T. Taniguchi, F. Mauri, and B. Beschoten, “ Raman spectroscopy as probe of nanometre-scale strain variations in graphene,” Nat. Commun. 6, 8429 (2015).
http://dx.doi.org/10.1038/ncomms9429
http://aip.metastore.ingenta.com/content/aip/journal/apl/108/22/10.1063/1.4952972
Loading
/content/aip/journal/apl/108/22/10.1063/1.4952972
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/108/22/10.1063/1.4952972
2016-06-03
2016-12-10

Abstract

Raman spectroscopy is an ideal tool for the characterization of strained graphene. Biaxial strain, in particular, allows for more reliable calculation of the Grüneisen parameters than uniaxial strain. However, the application of biaxial strain is rather difficult to achieve experimentally, so all previous studies reported on graphene subjected to relatively small biaxial strains (0.1%–1%), in contrast to uniaxial strain above 10%. Here, we report a simple fabrication technique to produce pressurized and stable graphene membranes that can support differential pressures up to 14 bar, corresponding to a reversible strain up to ∼2%. We find that the Grüneisen parameters remain constant even for the largest strains achieved, in agreement with the theoretical predictions. However, for strains above 1%, a distinctive broadening of both the G and 2D peaks was observed for biaxial strain. We attribute this to the nanoscale variations of strain in the membrane within an area comparable with the laser spot size.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/108/22/1.4952972.html;jsessionid=5BB826DYfVNmAEqyBOVMrShs.x-aip-live-06?itemId=/content/aip/journal/apl/108/22/10.1063/1.4952972&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/108/22/10.1063/1.4952972&pageURL=http://scitation.aip.org/content/aip/journal/apl/108/22/10.1063/1.4952972'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,