Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/108/24/10.1063/1.4953781
1.
A. Lindstrom, S. Mirbt, B. Sanyal, and M. Klintenberg, J. Phys. D: Appl. Phys. 49(3), 035101 (2016).
http://dx.doi.org/10.1088/0022-3727/49/3/035101
2.
A. Lindstrom, M. Klintenberg, B. Sanyal, and S. Mirbt, AIP Adv. 5(8), 087101 (2015).
http://dx.doi.org/10.1063/1.4928189
3.
A. Shepidchenko, B. Sanyal, M. Klintenberg, and S. Mirbt, Sci. Rep. 5, 14509 (2015).
http://dx.doi.org/10.1038/srep14509
4.
A. Shepidchenko, S. Mirbt, B. Sanyal, A. Hakansson, and M. Klintenberg, J. Phys.: Condens. Matter 25(41), 415801 (2013).
http://dx.doi.org/10.1088/0953-8984/25/41/415801
5.
D. Aberg, P. Erhart, and V. Lordi, Phys. Rev. B 88(4), 045201 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.045201
6.
A. Carvalho, A. K. Tagantsev, S. Oberg, P. R. Briddon, and N. Setter, Phys. Rev. B 81(7), 075215 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.075215
7.
F. Tuomisto and I. Makkonen, Rev. Mod. Phys. 85(4), 1583 (2013).
http://dx.doi.org/10.1103/RevModPhys.85.1583
8.
M. J. Puska, C. Corbel, and R. M. Nieminen, Phys. Rev. B 41(14), 9980 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.9980
9.
K. Saarinen, P. Hautojarvi, A. Vehanen, R. Krause, and G. Dlubek, Phys. Rev. B 39(8), 5287 (1989).
http://dx.doi.org/10.1103/PhysRevB.39.5287
10.
The experimental spectra and density functional theory files are available at DOI http://dx.doi.org/10.15132/10000112
11.
J. T. Mullins, J. Carles, N. M. Aitken, and A. W. Brinkman, J. Cryst. Growth 208(1–4), 211 (2000).
http://dx.doi.org/10.1016/S0022-0248(99)00394-2
12.
A. Choubey, P. Veeramani, A. T. G. Pym, J. T. Mullins, P. J. Sellin, A. W. Brinkman, I. Radley, A. Basu, and B. K. Tanner, J. Cryst. Growth 352(1), 120 (2012).
http://dx.doi.org/10.1016/j.jcrysgro.2012.03.005
13.
S. McGuire and D. J. Keeble, J. Appl. Phys. 100(10), 103504 (2006).
http://dx.doi.org/10.1063/1.2384794
14.
G. S. Kanda, L. Ravelli, B. Loewe, W. Egger, and D. J. Keeble, J. Phys. D: Appl. Phys. 49(2), 025305 (2016).
http://dx.doi.org/10.1088/0022-3727/49/2/025305
15.
R. Krause-Rehberg, H. S. Leipner, T. Abgarjan, and A. Polity, Appl. Phys. A 66(6), 599 (1998).
http://dx.doi.org/10.1007/s003390050721
16.
C. Corbel, L. Baroux, F. M. Kiessling, C. Gelysykes, and R. Triboulet, Mater. Sci. Eng., B 16(1–3), 134 (1993).
http://dx.doi.org/10.1016/0921-5107(93)90029-M
17.
K. Akimoto, H. Okuyama, M. Ikeda, and Y. Mori, Appl. Phys. Lett. 60(1), 91 (1992).
http://dx.doi.org/10.1063/1.107385
18.
B. G. Mendis, D. Gachet, J. D. Major, and K. Durose, Phys. Rev. Lett. 115(21), 218701 (2015).
http://dx.doi.org/10.1103/PhysRevLett.115.218701
19.
J. T-Thienprasert, S. Limpijumnong, A. Janotti, C. G. Van de Walle, L. Zhang, M. H. Du, and D. J. Singh, Comput. Mater. Sci. 49(4), S242 (2010).
http://dx.doi.org/10.1016/j.commatsci.2010.01.024
20.
C. Gely-Sykes, C. Corbel, and R. Triboulet, Solid State Commun. 80(1), 79 (1991).
http://dx.doi.org/10.1016/0038-1098(91)90602-R
21.
A. Polity, T. Abgarjan, and R. Krause-Rehberg, Mater. Sci. Forum 175–178, 473 (1995).
http://dx.doi.org/10.4028/www.scientific.net/MSF.175-178.473
22.
H. Kauppinen, L. Baroux, K. Saarinen, C. Corbel, and P. Hautojarvi, J. Phys.: Condens. Matter 9(25), 5495 (1997).
http://dx.doi.org/10.1088/0953-8984/9/25/017
23.
G. Tessaro and P. Mascher, J. Cryst. Growth 197(3), 581 (1999).
http://dx.doi.org/10.1016/S0022-0248(98)00960-9
24.
Z. L. Peng, P. J. Simpson, and P. Mascher, Electrochem. Solid-State Lett. 3(3), 150 (2000).
http://dx.doi.org/10.1149/1.1390985
25.
M. Martyniuk and P. Mascher, Physica B 308, 924 (2001).
26.
S. Neretina, N. V. Sochinskii, P. Mascher, and E. Saucedo, in Semiconductor Defect Engineering-Materials, Synthetic Structures and Devices ( Mater. Res. Soc. Symp. Proc., 2005), Vol. 864, pp. 567572.
27.
D. J. Keeble, J. D. Major, L. Ravelli, W. Egger, and K. Durose, Phys. Rev. B 84(17), 174122 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.174122
28.
H. Li, J. H. Min, L. J. Wang, Y. B. Xia, J. J. Zhang, and B. J. Ye, J. Inorg. Mater. 27(8), 790 (2012).
http://dx.doi.org/10.3724/SP.J.1077.2012.11548
29.
W. W. Liu, J. H. Min, X. Y. Liang, J. J. Zhang, X. X. Sun, L. J. Wang, A. Ran, and B. J. Ye, J. Phys.: Conf. Ser. 419, 012040 (2013).
http://dx.doi.org/10.1088/1742-6596/419/1/012040
30.
F. Plazaola, A. P. Seitsonen, and M. J. Puska, J. Phys.: Condens. Matter 6(42), 8809 (1994).
http://dx.doi.org/10.1088/0953-8984/6/42/012
31.
E. Menendez-Proupin and W. Orellana, Phys. Status Solidi B 252(12), 2649 (2015).
http://dx.doi.org/10.1002/pssb.201552357
32.
T. Torsti, T. Eirola, J. Enkovaara, T. Hakala, P. Havu, V. Havu, T. Hoynalanmaa, J. Ignatius, M. Lyly, I. Makkonen, T. T. Rantala, J. Ruokolainen, K. Ruotsalainen, E. Rasanen, H. Saarikoski, and M. J. Puska, Phys. Status Solidi B 243(5), 1016 (2006).
http://dx.doi.org/10.1002/pssb.200541348
33.
J. Arponen and E. Pajanne, Ann. Phys. 121(1–2), 343 (1979).
http://dx.doi.org/10.1016/0003-4916(79)90101-5
34.
E. Boronski and R. M. Nieminen, Phys. Rev. B 34(6), 3820 (1986).
http://dx.doi.org/10.1103/PhysRevB.34.3820
35.
B. Barbiellini, M. J. Puska, T. Korhonen, A. Harju, T. Torsti, and R. M. Nieminen, Phys. Rev. B 53(24), 16201 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.16201
36.
B. Barbiellini, M. J. Puska, T. Torsti, and R. M. Nieminen, Phys. Rev. B 51(11), 7341 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.7341
37.
J. Wiktor, G. Jomard, and M. Torrent, Phys. Rev. B 92(12), 125113 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.125113
38.
C. Hugenschmidt, C. Piochacz, M. Reiner, and K. Schreckenbach, New J. Phys. 14, 055027 (2012).
http://dx.doi.org/10.1088/1367-2630/14/5/055027
39.
B. E. O'Rourke, N. Oshima, A. Kinomura, T. Ohdaira, and R. Suzuki, Defect Diffus. Forum 331, 75 (2012).
http://dx.doi.org/10.4028/www.scientific.net/DDF.331.75
http://aip.metastore.ingenta.com/content/aip/journal/apl/108/24/10.1063/1.4953781
Loading
/content/aip/journal/apl/108/24/10.1063/1.4953781
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/108/24/10.1063/1.4953781
2016-06-13
2016-09-28

Abstract

Positron lifetime measurements on CdTe 0.15% Zn-doped by weight are presented, trapping to monovacancy defects is observed. At low temperatures, localization at shallow binding energy positron traps dominates. To aid defect identification density functional theory, calculated positron lifetimes and momentum distributions are obtained using relaxed geometry configurations of the monovacancy defects and the Te antisite. These calculations provide evidence that combined positron lifetime and coincidence Doppler spectroscopy measurements have the capability to identify neutral or negative charge states of the monovacancies, the Te antisite, A-centers, and divacancy defects in CdTe.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/108/24/1.4953781.html;jsessionid=8jz_vyCsM5aly4whWEACuOgE.x-aip-live-06?itemId=/content/aip/journal/apl/108/24/10.1063/1.4953781&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/108/24/10.1063/1.4953781&pageURL=http://scitation.aip.org/content/aip/journal/apl/108/24/10.1063/1.4953781'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,