Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/108/25/10.1063/1.4954236
1.
P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, Nature 406, 865 (2000).
http://dx.doi.org/10.1038/35022529
2.
S. Marcinkevicius, K. M. Kelchner, L. Y. Kuritzky, S. Nakamura, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 103, 111107 (2013).
http://dx.doi.org/10.1063/1.4820839
3.
G. A. Garrett, H. Shen, M. Wraback, A. Tyagi, M. C. Schmidt, J. S. Speck, S. P. DenBaars, and S. Nakamura, Phys. Status Solidi C 6, S800 (2009).
http://dx.doi.org/10.1002/pssc.200880974
4.
T. Akasaka, H. Gotoh, H. Nakano, and T. Makimoto, Appl. Phys. Lett. 86, 191902 (2005).
http://dx.doi.org/10.1063/1.1925314
5.
O. Mayrock, H.-J. Wunsche, and F. Henneberger, Phys. Rev. B 62, 16870 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.16870
6.
S. F. Chichibu, T. Azuhata, T. Sota, T. Mukai, and S. Nakamura, J. Appl. Phys. 88, 5153 (2000).
http://dx.doi.org/10.1063/1.1314906
7.
J. Wang, L. Wang, W. Zhao, Z. Hao, and Y. Luo, Appl. Phys. Lett. 97, 201112 (2010).
http://dx.doi.org/10.1063/1.3520139
8.
J. A. Davidson, P. Dawson, T. Wang, T. Sugahara, J. W. Orton, and S. Sakai, Semicond. Sci. Technol. 15, 497 (2000).
http://dx.doi.org/10.1088/0268-1242/15/6/302
9.
H. Morkoc, Handbook of Nitride Semiconductors and Devices ( Wiley VCH, Berlin, 2008), Vol. 3.
10.
J. Xie, X. Ni, Q. Fan, R. Shimada, U. Ozgur, and H. Morkoc, Appl. Phys. Lett. 93, 121107 (2008).
http://dx.doi.org/10.1063/1.2988324
11.
I. A. Pope, P. M. Smowton, P. Blood, J. D. Thompson, M. J. Kappers, and C. J. Humphreys, Appl. Phys. Lett. 82, 2755 (2003).
http://dx.doi.org/10.1063/1.1570515
12.
N. F. Gardner, G. O. Muller, Y. C. Shen, G. Chen, S. Watanabe, W. Gotz, and M. R. Krames, Appl. Phys. Lett. 91, 243506 (2007).
http://dx.doi.org/10.1063/1.2807272
13.
J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, Phys. Rev. Letts. 110, 177406 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.177406
14.
M. Schubert, J. Xu, Q. Dai, F. W. Mont, K. J. Kim, and E. F. Schubert, Appl. Phys. Lett. 94, 081114 (2009).
http://dx.doi.org/10.1063/1.3089691
15.
J. Hader, J. V. Moloney, and S. W. Koch, Appl. Phys. Lett. 96, 221106 (2010).
http://dx.doi.org/10.1063/1.3446889
16.
S. Hammersley, D. Watson-Parris, P. Dawson, T. J. Godfrey, M. J. Kappers, C. McAleese, R. A. Oliver, and C. J. Humphreys, J. Appl. Phys. 111, 083512 (2012).
http://dx.doi.org/10.1063/1.3703062
17.
G. Pozina, R. Ciechonski, Z. Bi, L. Samulson, and B. Monemar, Appl. Phys. Lett. 107, 251106 (2015).
http://dx.doi.org/10.1063/1.4938208
18.
S.-C. Ling, T.-C. Lu, S.-P. Chang, J.-R. Chen, J.-R. Kuo, and S.-C. Wang, Appl. Phys. Lett. 96, 231101 (2010).
http://dx.doi.org/10.1063/1.3449557
19.
X. Li, X. Ni, H. Y. Liu, F. Zhang, S. Liu, J. Lee, V. Avrutin, U. Ozgur, T. Paskova, G. Mulholland, K. R. Evans, and H. Morkoc, Phys. Status Solidi C 8, 1560 (2011).
http://dx.doi.org/10.1002/pssc.201000893
20.
X. Li, X. Ni, J. Lee, M. Wu, U. Ozgur, H. Morkoc, T. Pakova, G. Mulholland, and K. R. Evans, Appl. Phys. Lett. 95, 121107 (2009).
http://dx.doi.org/10.1063/1.3236538
21.
S.-P. Chang, T.-C. Lu, L.-F. Zhuo, C.-Y. Jang, D.-W. Lin, H.-C. Yang, H.-C. Kuo, and S.-C. Wang, J. Electrochem. Soc. 157, H501 (2010).
http://dx.doi.org/10.1149/1.3327909
22.
R. Vaxenburg, A. Rodina, E. Lifshitz, and A. L. Efros, Appl. Phys. Lett. 103, 221111 (2013).
http://dx.doi.org/10.1063/1.4833915
23.
Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, Appl. Phys. Lett. 91, 141101 (2007).
http://dx.doi.org/10.1063/1.2785135
24.
J. Iveland, M. Piccardo, L. Martinelli, J. Peretti, J. W. Choi, N. Young, S. Nakamura, J. S. Speck, and C. Weisbuch, Appl. Phys. Lett. 105, 052103 (2014).
http://dx.doi.org/10.1063/1.4892473
25.
M. Binder, A. Nirschl, R. Zeisel, T. Hager, H.-J. Lugauer, M. Sabathil, D. Bougeard, J. Wagner, and B. Galler, Appl. Phys. Lett. 103, 071108 (2013).
http://dx.doi.org/10.1063/1.4818761
26.
E. Kioupakis, Q. Yan, and C. G. Van de Walle, Appl. Phys. Lett. 101, 231107 (2012).
http://dx.doi.org/10.1063/1.4769374
27.
E. Kioupakis, Q. Yan, D. Steiauf, and C. G. Van de Walle, New J. Phys. 15, 125006 (2013).
http://dx.doi.org/10.1088/1367-2630/15/12/125006
28.
C. C. Pan, S. Tanaka, F. Wu, F. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezel, Appl. Phys. Express 5, 062103 (2012).
http://dx.doi.org/10.1143/APEX.5.062103
29.
A. David and M. J. Grundmann, Appl. Phys. Lett. 97, 033501 (2010).
http://dx.doi.org/10.1063/1.3462916
30.
S. J. Leem, Y. C. Shin, E. H. Kim, C. M. Kim, B. G. Lee, Y. Moon, I. H. Lee, and T. G. Kim, Semicond. Sci. Technol. 23, 125039 (2008).
http://dx.doi.org/10.1088/0268-1242/23/12/125039
31.
R. A. Oliver, F. C.-P. Massabuau, M. J. Kappers, W. A. Phillips, E. J. Thrush, C. C. Tartan, W. E. Blenkhorn, T. J. Badcock, P. Dawson, M. A. Hopkins, C. C. Humphreys, D. W. Allsopp, and C. J. Humphreys, Appl. Phys. Lett. 103, 141114 (2013).
http://dx.doi.org/10.1063/1.4824193
32.
D. Sutherland, T. Zhu, J. T. Griffiths, F. Tang, P. Dawson, D. Kundys, F. Oehler, M. J. Kappers, C. J. Humphreys, and R. A. Oliver, Phys. Status Solidi B 252, 965 (2015).
http://dx.doi.org/10.1002/pssb.201451563
33.
D. M. Graham, A. Soltani-Vala, P. Dawson, M. J. Godfrey, T. M. Smeeton, J. S. Barnard, M. J. Kappers, C. J. Humphreys, and T. J. Thrush, J. Appl. Phys. 97, 103508 (2005).
http://dx.doi.org/10.1063/1.1897070
34.
S. Schulz, D. P. Tanner, E. P. O'Reilly, M. A. Caro, T. L. Martin, P. A. J. Bagot, M. P. Moody, F. Tang, J. T. Griffiths, F. Oehler, M. J. Kappers, R. A. Oliver, C. J. Humphreys, D. Sutherland, M. J. Davies, and P. Dawson, Phys. Rev. B 92, 235419 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.235419
35.
D. Watson-Parris, M. J. Godfrey, P. Dawson, R. A. Oliver, M. J. Galtrey, M. J. Kappers, and C. J. Humphreys, Phys. Rev. B 83, 115321 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.115321
36.
S. Schulz, M. A. Caro, C. Coughlan, and E. P. O'Reilly, Phys. Rev. B 91, 035439 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.035439
37.
C. N. Brosseau, M. Perrin, C. Silva, and R. Leonelli, Phys. Rev. B 82, 085305 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.085305
38.
G. Sun, G. Xu, Y. J. Ding, H. Zhao, G. Liu, J. Zhang, and N. Tansu, Appl. Phys. Lett. 99, 081104 (2011).
http://dx.doi.org/10.1063/1.3627166
39.
M. J. Davies, T. J. Badcock, P. Dawson, M. J. Kappers, R. A. Oliver, and C. J. Humphreys, Appl. Phys. Lett. 102, 022106 (2013).
http://dx.doi.org/10.1063/1.4781398
40.
G. Gourdon and P. Lavallard, Phys. Status Solidi B 153, 641 (1989).
http://dx.doi.org/10.1002/pssb.2221530222
41.
H. Kalt, J. Collet, S. D. Baranokski, R. Saleh, P. Thomas, L. S. Dang, and J. Cibert, Phys. Rev. B 45, 4253 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.4253
42.
O. Rubel, W. Stolz, and S. D. Baranovski, Appl. Phys. Lett. 91, 021903 (2007).
http://dx.doi.org/10.1063/1.2755927
43.
N. I. Bochkareva, Y. T. Rebane, and Y. G. Scheter, Appl. Phys. Lett. 103, 191101 (2013).
http://dx.doi.org/10.1063/1.4828780
44.
R. Aleksiejunas, K. Gelzinyte, S. Nargelas, K. Jarasiunas, M. Vengris, E. A. Armour, D. P. Byrnes, R. A. Arif, S. M. Lee, and G. D. Papasouliotis, Appl. Phys. Lett. 104, 022114 (2014).
http://dx.doi.org/10.1063/1.4862026
http://aip.metastore.ingenta.com/content/aip/journal/apl/108/25/10.1063/1.4954236
Loading
/content/aip/journal/apl/108/25/10.1063/1.4954236
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/108/25/10.1063/1.4954236
2016-06-20
2016-09-24

Abstract

We report on a comparative study of efficiency droop in polar and non-polar InGaN quantum well structures at T = 10 K. To ensure that the experiments were carried out with identical carrier densities for any particular excitation power density, we used laser pulses of duration ∼100 fs at a repetition rate of 400 kHz. For both types of structures, efficiency droop was observed to occur for carrier densities of above 7 × 1011 cm−2 pulse−1 per quantum well; also both structures exhibited similar spectral broadening in the droop regime. These results show that efficiency droop is intrinsic in InGaN quantum wells, whether polar or non-polar, and is a function, specifically, of carrier density.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/108/25/1.4954236.html;jsessionid=io1fzjYlOVR8b8H2HHe-b_6d.x-aip-live-03?itemId=/content/aip/journal/apl/108/25/10.1063/1.4954236&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/108/25/10.1063/1.4954236&pageURL=http://scitation.aip.org/content/aip/journal/apl/108/25/10.1063/1.4954236'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,