Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, Nature 406, 865 (2000).
S. Marcinkevicius, K. M. Kelchner, L. Y. Kuritzky, S. Nakamura, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 103, 111107 (2013).
G. A. Garrett, H. Shen, M. Wraback, A. Tyagi, M. C. Schmidt, J. S. Speck, S. P. DenBaars, and S. Nakamura, Phys. Status Solidi C 6, S800 (2009).
T. Akasaka, H. Gotoh, H. Nakano, and T. Makimoto, Appl. Phys. Lett. 86, 191902 (2005).
O. Mayrock, H.-J. Wunsche, and F. Henneberger, Phys. Rev. B 62, 16870 (2000).
S. F. Chichibu, T. Azuhata, T. Sota, T. Mukai, and S. Nakamura, J. Appl. Phys. 88, 5153 (2000).
J. Wang, L. Wang, W. Zhao, Z. Hao, and Y. Luo, Appl. Phys. Lett. 97, 201112 (2010).
J. A. Davidson, P. Dawson, T. Wang, T. Sugahara, J. W. Orton, and S. Sakai, Semicond. Sci. Technol. 15, 497 (2000).
H. Morkoc, Handbook of Nitride Semiconductors and Devices ( Wiley VCH, Berlin, 2008), Vol. 3.
J. Xie, X. Ni, Q. Fan, R. Shimada, U. Ozgur, and H. Morkoc, Appl. Phys. Lett. 93, 121107 (2008).
I. A. Pope, P. M. Smowton, P. Blood, J. D. Thompson, M. J. Kappers, and C. J. Humphreys, Appl. Phys. Lett. 82, 2755 (2003).
N. F. Gardner, G. O. Muller, Y. C. Shen, G. Chen, S. Watanabe, W. Gotz, and M. R. Krames, Appl. Phys. Lett. 91, 243506 (2007).
J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, Phys. Rev. Letts. 110, 177406 (2013).
M. Schubert, J. Xu, Q. Dai, F. W. Mont, K. J. Kim, and E. F. Schubert, Appl. Phys. Lett. 94, 081114 (2009).
J. Hader, J. V. Moloney, and S. W. Koch, Appl. Phys. Lett. 96, 221106 (2010).
S. Hammersley, D. Watson-Parris, P. Dawson, T. J. Godfrey, M. J. Kappers, C. McAleese, R. A. Oliver, and C. J. Humphreys, J. Appl. Phys. 111, 083512 (2012).
G. Pozina, R. Ciechonski, Z. Bi, L. Samulson, and B. Monemar, Appl. Phys. Lett. 107, 251106 (2015).
S.-C. Ling, T.-C. Lu, S.-P. Chang, J.-R. Chen, J.-R. Kuo, and S.-C. Wang, Appl. Phys. Lett. 96, 231101 (2010).
X. Li, X. Ni, H. Y. Liu, F. Zhang, S. Liu, J. Lee, V. Avrutin, U. Ozgur, T. Paskova, G. Mulholland, K. R. Evans, and H. Morkoc, Phys. Status Solidi C 8, 1560 (2011).
X. Li, X. Ni, J. Lee, M. Wu, U. Ozgur, H. Morkoc, T. Pakova, G. Mulholland, and K. R. Evans, Appl. Phys. Lett. 95, 121107 (2009).
S.-P. Chang, T.-C. Lu, L.-F. Zhuo, C.-Y. Jang, D.-W. Lin, H.-C. Yang, H.-C. Kuo, and S.-C. Wang, J. Electrochem. Soc. 157, H501 (2010).
R. Vaxenburg, A. Rodina, E. Lifshitz, and A. L. Efros, Appl. Phys. Lett. 103, 221111 (2013).
Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, Appl. Phys. Lett. 91, 141101 (2007).
J. Iveland, M. Piccardo, L. Martinelli, J. Peretti, J. W. Choi, N. Young, S. Nakamura, J. S. Speck, and C. Weisbuch, Appl. Phys. Lett. 105, 052103 (2014).
M. Binder, A. Nirschl, R. Zeisel, T. Hager, H.-J. Lugauer, M. Sabathil, D. Bougeard, J. Wagner, and B. Galler, Appl. Phys. Lett. 103, 071108 (2013).
E. Kioupakis, Q. Yan, and C. G. Van de Walle, Appl. Phys. Lett. 101, 231107 (2012).
E. Kioupakis, Q. Yan, D. Steiauf, and C. G. Van de Walle, New J. Phys. 15, 125006 (2013).
C. C. Pan, S. Tanaka, F. Wu, F. Zhao, J. S. Speck, S. Nakamura, S. P. DenBaars, and D. Feezel, Appl. Phys. Express 5, 062103 (2012).
A. David and M. J. Grundmann, Appl. Phys. Lett. 97, 033501 (2010).
S. J. Leem, Y. C. Shin, E. H. Kim, C. M. Kim, B. G. Lee, Y. Moon, I. H. Lee, and T. G. Kim, Semicond. Sci. Technol. 23, 125039 (2008).
R. A. Oliver, F. C.-P. Massabuau, M. J. Kappers, W. A. Phillips, E. J. Thrush, C. C. Tartan, W. E. Blenkhorn, T. J. Badcock, P. Dawson, M. A. Hopkins, C. C. Humphreys, D. W. Allsopp, and C. J. Humphreys, Appl. Phys. Lett. 103, 141114 (2013).
D. Sutherland, T. Zhu, J. T. Griffiths, F. Tang, P. Dawson, D. Kundys, F. Oehler, M. J. Kappers, C. J. Humphreys, and R. A. Oliver, Phys. Status Solidi B 252, 965 (2015).
D. M. Graham, A. Soltani-Vala, P. Dawson, M. J. Godfrey, T. M. Smeeton, J. S. Barnard, M. J. Kappers, C. J. Humphreys, and T. J. Thrush, J. Appl. Phys. 97, 103508 (2005).
S. Schulz, D. P. Tanner, E. P. O'Reilly, M. A. Caro, T. L. Martin, P. A. J. Bagot, M. P. Moody, F. Tang, J. T. Griffiths, F. Oehler, M. J. Kappers, R. A. Oliver, C. J. Humphreys, D. Sutherland, M. J. Davies, and P. Dawson, Phys. Rev. B 92, 235419 (2015).
D. Watson-Parris, M. J. Godfrey, P. Dawson, R. A. Oliver, M. J. Galtrey, M. J. Kappers, and C. J. Humphreys, Phys. Rev. B 83, 115321 (2011).
S. Schulz, M. A. Caro, C. Coughlan, and E. P. O'Reilly, Phys. Rev. B 91, 035439 (2015).
C. N. Brosseau, M. Perrin, C. Silva, and R. Leonelli, Phys. Rev. B 82, 085305 (2010).
G. Sun, G. Xu, Y. J. Ding, H. Zhao, G. Liu, J. Zhang, and N. Tansu, Appl. Phys. Lett. 99, 081104 (2011).
M. J. Davies, T. J. Badcock, P. Dawson, M. J. Kappers, R. A. Oliver, and C. J. Humphreys, Appl. Phys. Lett. 102, 022106 (2013).
G. Gourdon and P. Lavallard, Phys. Status Solidi B 153, 641 (1989).
H. Kalt, J. Collet, S. D. Baranokski, R. Saleh, P. Thomas, L. S. Dang, and J. Cibert, Phys. Rev. B 45, 4253 (1992).
O. Rubel, W. Stolz, and S. D. Baranovski, Appl. Phys. Lett. 91, 021903 (2007).
N. I. Bochkareva, Y. T. Rebane, and Y. G. Scheter, Appl. Phys. Lett. 103, 191101 (2013).
R. Aleksiejunas, K. Gelzinyte, S. Nargelas, K. Jarasiunas, M. Vengris, E. A. Armour, D. P. Byrnes, R. A. Arif, S. M. Lee, and G. D. Papasouliotis, Appl. Phys. Lett. 104, 022114 (2014).

Data & Media loading...


Article metrics loading...



We report on a comparative study of efficiency droop in polar and non-polar InGaN quantum well structures at T = 10 K. To ensure that the experiments were carried out with identical carrier densities for any particular excitation power density, we used laser pulses of duration ∼100 fs at a repetition rate of 400 kHz. For both types of structures, efficiency droop was observed to occur for carrier densities of above 7 × 1011 cm−2 pulse−1 per quantum well; also both structures exhibited similar spectral broadening in the droop regime. These results show that efficiency droop is intrinsic in InGaN quantum wells, whether polar or non-polar, and is a function, specifically, of carrier density.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd