Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/108/25/10.1063/1.4954797
1.
A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, Nat. Mater. 8(11), 867 (2009).
http://dx.doi.org/10.1038/nmat2546
2.
T. Chen, S. Li, and H. Sun, Sensors 12(3), 2742 (2012).
http://dx.doi.org/10.3390/s120302742
3.
A. G. Brolo, Nat. Photonics 6(11), 709 (2012).
http://dx.doi.org/10.1038/nphoton.2012.266
4.
C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, Nat. Mater. 11(1), 69 (2012).
http://dx.doi.org/10.1038/nmat3161
5.
V. Liberman, R. Adato, T. H. Jeys, B. G. Saar, S. Erramilli, and H. Altug, Opt. Express 20(11), 11953 (2012).
http://dx.doi.org/10.1364/OE.20.011953
6.
M. I. Stockman, Phys. Today 64(2), 39 (2011).
http://dx.doi.org/10.1063/1.3554315
7.
J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, Phys. Rev. Lett. 95(22), 223902 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.223902
8.
M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett. 31(9), 1259 (2006).
http://dx.doi.org/10.1364/OL.31.001259
9.
B. Lahiri, S. G. McMeekin, A. Z. Khokhar, R. M. De La Rue, and N. P. Johnson, Opt. Express 18(3), 3210 (2010).
http://dx.doi.org/10.1364/OE.18.003210
10.
R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, Appl. Phys. Lett. 105(17), 171101 (2014).
http://dx.doi.org/10.1063/1.4895595
11.
E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, Appl. Phys. Lett. 95(4), 043113 (2009).
http://dx.doi.org/10.1063/1.3194154
12.
B. Lahiri, A. Khokhar, R. De La Rue, S. McMeekin, and N. Johnson, Opt. Express 17(2), 1107 (2009).
http://dx.doi.org/10.1364/OE.17.001107
13.
D. H. Williams and I. Fleming, Spectroscopic Methods in Organic Chemistry, 2nd ed. ( McGraw Hill Publications, 1973), Chap. 2.
14.
J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, and W. T. Masselink, Appl. Opt. 51, 6789 (2012).
http://dx.doi.org/10.1364/AO.51.006789
15.
C. Wochnowski, S. Metev, and G. Sepold, Appl. Surf. Sci. 154, 706 (2000).
http://dx.doi.org/10.1016/S0169-4332(99)00435-3
16.
C. Y. Chen and T. J. Yen, J. Phys. D: Appl. Phys. 42(18), 185402 (2009).
http://dx.doi.org/10.1088/0022-3727/42/18/185402
17.
W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, Phys. Rev. Lett. 96(10), 107401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.107401
18.
M. Ren, C. Pan, Q. Li, W. Cai, X. Zhang, Q. Wu, S. Fan, and J. Xu, Opt. Lett. 38(16), 3133 (2013).
http://dx.doi.org/10.1364/OL.38.003133
19.
M. Piliarik, P. Kvasnička, N. Galler, J. R. Krenn, and J. Homola, Opt. Express 19(10), 9213 (2011).
http://dx.doi.org/10.1364/OE.19.009213
20.
B. Lahiri, G. Holland, V. Aksyuk, and A. Centrone, Nano Lett. 13(7), 3218 (2013).
http://dx.doi.org/10.1021/nl401284m
21.
S. Naidu, V. Murthy, P. Brahman, and C. Pullaiah, Acta Polym. 41(6), 349 (1990).
http://dx.doi.org/10.1002/actp.1990.010410608
22.
I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, ACS Nano 5(10), 8167 (2011).
http://dx.doi.org/10.1021/nn202815k
http://aip.metastore.ingenta.com/content/aip/journal/apl/108/25/10.1063/1.4954797
Loading
/content/aip/journal/apl/108/25/10.1063/1.4954797
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/108/25/10.1063/1.4954797
2016-06-23
2016-09-27

Abstract

Split ring resonator (SRR) based metamaterials have frequently been demonstrated for use as optical sensors of organic materials. This is made possible by matching the wavelength of the SRR plasmonic resonance with a molecular resonance of a specific analyte, which is usually placed on top of the metal structure. However, systematic studies of SRRs that identify the regions that exhibit a high electric field strength are commonly performed using simulations. In this paper we demonstrate that areas of high electric field strength, termed “hot-spots,” can be found by localizing a small quantity of organic analyte at various positions on or near the structure. Furthermore, the sensitivity of the SRR to the localized analyte can be quantified to determine, experimentally, suitable regions for optical sensing.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/108/25/1.4954797.html;jsessionid=qhHsh9_4IkZF0WuhqWzMHiOw.x-aip-live-03?itemId=/content/aip/journal/apl/108/25/10.1063/1.4954797&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/108/25/10.1063/1.4954797&pageURL=http://scitation.aip.org/content/aip/journal/apl/108/25/10.1063/1.4954797'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,