Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
L. Müller-Meskamp, Y. H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckardt, K. Leo, and A. F. Lasagni, Adv. Mater. 24, 906 (2012).
Y. Park, F. Nehm, L. Müller-Meskamp, K. Vandewal, and K. Leo, Opt. Express 24, A974 (2016).
S. John, Nat. Mater. 11, 997 (2012).
C. López-López, S. Colodrero, A. Jiménez-Solano, G. Lozano, R. Ortiz, M. E. Calvo, and H. Míguez, Adv. Opt. Mater. 2, 879 (2014).
A. J. Smith, C. Wang, D. Guo, C. Sun, and J. Huang, Nat. Commun. 5, 5517 (2014).
S. Wiesendanger, M. Zilk, T. Pertsch, F. Lederer, and C. Rockstuhl, Appl. Phys. Lett. 103, 131115 (2013).
C. Rockstuhl, F. Lederer, K. Bittkau, T. Beckers, and R. Carius, Appl. Phys. Lett. 94, 211101 (2009).
M. Niggemann, M. Riede, A. Gombert, and K. Leo, Phys. Status Solidi 205, 2862 (2008).
C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, ACS Nano 6, 2790 (2012).
J. Lee, Y. Y. Kwon, E.-H. Choi, J. Park, H. Yoon, and H. Kim, Opt. Express 22(S3), A705 (2014).
Z. Tang, A. Elfwing, J. Bergqvist, W. Tress, and O. Inganäs, Adv. Energy Mater. 3, 1606 (2013).
H.-W. Chang, Y. H. Kim, J. Lee, S. Hofmann, B. Lüssem, L. Müller-Meskamp, M. C. Gather, K. Leo, and C.-C. Wu, Org. Electron. 15, 1028 (2014).
H.-W. Chang, J. Lee, S. Hofmann, Y. Hyun Kim, L. Müller-Meskamp, B. Lüssem, C.-C. Wu, K. Leo, and M. C. Gather, J. Appl. Phys. 113, 204502 (2013).
C.-H. Shin, E. Y. Shin, M.-H. Kim, J.-H. Lee, and Y. Choi, Opt. Express 23, A133 (2015).
Y. H. Kim, J. Lee, S. Hofmann, M. C. Gather, L. Müller-Meskamp, and K. Leo, Adv. Funct. Mater. 23, 3763 (2013).
Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, and K. Leo, Adv. Funct. Mater. 21, 1076 (2011).
A. Elschner, S. Kirchmeyer, W. Lovenich, and U. Merker, PEDOT: Principles and Applications of an Intrinsically Conductive Polymer ( CRC Press, 2010).
Y. Hyun Kim, C. Sachse, M. Hermenau, K. Fehse, M. Riede, L. Müller-Meskamp, and K. Leo, Appl. Phys. Lett. 99, 113305 (2011).
R. Meerheim, C. Körner, and K. Leo, Appl. Phys. Lett. 105, 063306 (2014).
A. M. Nardes, M. Kemerink, R. A. J. Janssen, J. A. M. Bastiaansen, N. M. M. Kiggen, B. M. W. Langeveld, A. J. J. M. van Breemen, and M. M. de Kok, Adv. Mater. 19, 1196 (2007).
A. M. Nardes, R. A. J. Janssen, and M. Kemerink, Adv. Funct. Mater. 18, 865 (2008).

Data & Media loading...


Article metrics loading...



The performance of organic optoelectronic devices can be improved by employing a suitable optical cavity design beyond the standard plane layer approach, e.g., by the inclusion of periodically or randomly textured structures which increase light incoupling or extraction. One of the simplest approaches is to add an additional layer containing light scattering particles into the device stack. Solution processed poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) thin films are promising for replacing the brittle and expensive indium tin oxide transparent electrode. We use a blend of 100 nm TiO scattering particles in PEDOT:PSS solution to fabricate transparent electrode films which also functions as a scattering layer. When utilized in an organic photovoltaic device, a power conversion efficiency of 7.92% is achieved, which is an 8.6% relative improvement compared to a device with a neat PEDOT:PSS electrode without the nanoparticles. This improvement is caused by an increase in short-circuit current due to an improved photon harvesting in the 320 nm–700 nm spectral wavelength range.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd