Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/108/26/10.1063/1.4954770
1.
J. Yang, H.-L. Yip, and A. K.-Y. Jen, Adv. Energy Mater. 3, 549 (2013).
http://dx.doi.org/10.1002/aenm.201200514
2.
H. A. Sodano, D. J. Inman, and G. Park, Shock Vib. Dig. 36, 197 (2004).
http://dx.doi.org/10.1177/0583102404043275
3.
G. J. Snyder and E. S. Toberer, Nat. Mater. 7, 105 (2008).
http://dx.doi.org/10.1038/nmat2090
4.
W. G. Cady, Piezoelectricity: An Introduction to the Theory and Applications of Electromechanical Phenonmena in Crystals, 2nd ed. ( Dover, 1964).
5.
T. M. Tritt and M. A. Subramanian, MRS Bull. 31, 188 (2006).
http://dx.doi.org/10.1557/mrs2006.44
6.
S. R. Anton and H. A. Sodano, Smart Mater. Struct. 16, R1 (2007).
http://dx.doi.org/10.1088/0964-1726/16/3/R01
7.
R. C. Y. King, F. Roussel, J.-F. Brun, and C. Gors, Synth. Met. 162, 1348 (2012).
http://dx.doi.org/10.1016/j.synthmet.2012.05.029
8.
N. Dubey and M. Leclerc, J. Polym. Sci. Part B: Polym. Phys. 49, 467 (2011).
http://dx.doi.org/10.1002/polb.22206
9.
C. A. Hewitt, D. S. Montgomery, R. L. Barbalace, R. D. Carlson, and D. L. Carroll, J. Appl. Phys. 115, 184502 (2014).
http://dx.doi.org/10.1063/1.4874375
10.
C. Yu, K. Choi, L. Yin, and J. C. Grunlan, ACS Nano 5, 7885 (2011).
http://dx.doi.org/10.1021/nn202868a
11.
W. Zhao, S. Fan, N. Xiao, D. Liu, Y. Y. Tay, C. Yu, D. Sim, H. H. Hng, Q. Zhang, F. Boey, J. Ma, X. Zhao, H. Zhang, and Q. Yan, Energy Environ. Sci. 5, 5364 (2012).
http://dx.doi.org/10.1039/C1EE01931G
12.
K. Zhang, M. Davis, J. Qiu, L. Hope-Weeks, and S. Wang, Nanotechnology 23, 385701 (2012).
http://dx.doi.org/10.1088/0957-4484/23/38/385701
13.
C. Dun, C. A. Hewitt, H. Huang, D. S. Montgomery, J. Xu, and D. L. Carroll, Phys. Chem. Chem. Phys. 17, 8591 (2015).
http://dx.doi.org/10.1039/C4CP05390G
14.
K. T. Kim, S. Y. Choi, E. H. Shin, K. S. Moon, H. Y. Koo, G.-G. Lee, and G. H. Ha, Carbon 52, 541 (2013).
http://dx.doi.org/10.1016/j.carbon.2012.10.008
15.
D. Madan, A. Chen, P. K. Wright, and J. W. Evans, J. Electron. Mater. 41, 1481 (2012).
http://dx.doi.org/10.1007/s11664-011-1885-5
16.
H. Song, C. Liu, H. Zhu, F. Kong, B. Lu, J. Xu, J. Wang, and F. Zhao, J. Electron. Mater. 42, 1268 (2013).
http://dx.doi.org/10.1007/s11664-013-2587-y
17.
H. S. Kim, J.-H. Kim, and J. Kim, Int. J. Precis. Eng. Manuf. 12, 1129 (2011).
http://dx.doi.org/10.1007/s12541-011-0151-3
18.
S. B. Lang and S. Muensit, Appl. Phys. A Mater. Sci. Process. 85, 125 (2006).
http://dx.doi.org/10.1007/s00339-006-3688-8
19.
V. V. Kochervinskii, Crystallogr. Rep. 48, 649 (2003).
http://dx.doi.org/10.1134/1.1595194
20.
D. S. Montgomery, C. A. Hewitt, R. Barbalace, T. Jones, and D. L. Carroll, Carbon 96, 778 (2016).
http://dx.doi.org/10.1016/j.carbon.2015.09.029
21.
J. Sirohi and I. Chopra, J. Intell. Mater. Syst. Struct. 11, 246 (2000).
http://dx.doi.org/10.1106/8BFB-GC8P-XQ47-YCQ0
22.
See supplementary material at http://dx.doi.org/10.1063/1.4954770 for derivation and results of Equations (1) and (2).[Supplementary Material]
23.
S. Roundy and P. K. Wright, Smart Mater. Struct. 13, 1131 (2004).
http://dx.doi.org/10.1088/0964-1726/13/5/018
24.
C. A. Hewitt, A. B. Kaiser, S. Roth, M. Craps, R. Czerw, and D. L. Carroll, Nano Lett. 12, 1307 (2012).
http://dx.doi.org/10.1021/nl203806q
25.
D. D. Freeman, K. Choi, and C. Yu, PLoS One 7, e47822 (2012).
http://dx.doi.org/10.1371/journal.pone.0047822
http://aip.metastore.ingenta.com/content/aip/journal/apl/108/26/10.1063/1.4954770
Loading
/content/aip/journal/apl/108/26/10.1063/1.4954770
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/108/26/10.1063/1.4954770
2016-06-27
2016-12-03

Abstract

This work presents an integration of flexible thermoelectric and piezoelectric materials into a single device structure. This device architecture overcomes several prohibitive issues facing the combination of traditional thermoelectric and piezoelectric generators, while optimizing performance of the combined power output. The structure design uses a carbon nanotube/polymer thin film as a flexible thermoelectric generator that doubles as an electrode on a piezoelectric generator made of poly(vinylidene fluoride). An example 2 × 2 array of devices is shown to generate 89% of the maximum thermoelectric power, and provide 5.3 times more piezoelectric voltage when compared with a traditional device.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/108/26/1.4954770.html;jsessionid=brsaKYdbkI9FedhiwodSaTIl.x-aip-live-06?itemId=/content/aip/journal/apl/108/26/10.1063/1.4954770&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/108/26/10.1063/1.4954770&pageURL=http://scitation.aip.org/content/aip/journal/apl/108/26/10.1063/1.4954770'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,