Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. O. Knotek, M. Böhmer, and T. Leyendecker, J. Vac. Sci. Technol., A 4, 2695 (1986).
2. T. Leyendecker, O. Lemmer, S. Esser, and J. Ebberink, Surf. Coat. Technol. 48, 175 (1991).
3. J. M. Molarius, A. S. Korhonen, E. Harju, and R. Lappalainen, Surf. Coat. Technol. 33, 117 (1987).
4. V. R. Parameswaran, J.-P. Immarigeon, and D. Nagy, Surf. Coat. Technol. 52, 251 (1992).
5. M.-A. Nicolet, Thin Solid Films 52, 415 (1978).
6. I. Petrov, E. Mojab, F. Adibi, J. E. Greene, L. Hultman, and J.-E. Sundgren, J. Vac. Sci. Technol., A 11, 11 (1993).
7. J. S. Chun, I. Petrov, and J. E. Greene, J. Appl. Phys. 86, 3633 (1999).
8. D. McIntyre, J. E. Greene, G. Hakansson, J.-E. Sundgren, and W.-D. Münz, J. Appl. Phys. 67, 1542 (1990).
9. L. A. Donohue, I. J. Smith, W.-D. Münz, I. Petrov, and J. E. Greene, Surf. Coat. Technol. 94/95, 226 (1997).
10. A. Ingason, F. Magnus, J. S. Agustsson, S. Olafsson, and J. T. Gudmundsson, Thin Solid Films 517, 6731 (2009).
11. D. Music and J. M. Schneider, New J. Phys. 15, 073004 (2013).
12. Ch. Kunze, D. Music, M. to Baben, J. M. Schneider, and G. Grundmeier, Appl. Surf. Sci. 290, 504508 (2014).
13. J. M. Schneider, B. Hjörvarsson, X. Wang, and L. Hultman, Appl. Phys. Lett. 75, 3476 (1999).
14. J. Rosén, E. Widenkvist, K. Larsson, U. Kreissig, St. Mráz, C. Martinez, D. Music, and J. M. Schneider, Appl. Phys. Lett. 88, 191905 (2006).
15. I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, J. Vac. Sci. Technol. 21, S117 (2003).
16. G. Greczynski, I. Petrov, J. E. Greene, and L. Hultman, J. Vac. Sci. Technol., A 33, 05E101 (2015).
17. J. Jensen, D. Martin, A. Surpi, and T. Kubart, Nucl. Instrum. Methods B 268, 1893 (2010).
18. D. A. Shirley, Phys. Rev. B 5, 4709 (1972).
19.Kratos Analytical Ltd., library filename: “casaXPS_KratosAxis-F1s.lib.”
20.See N. Fairley, “ XPS lineshapes and curve fitting,” in Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, edited by D. Briggs and J. T. Grant ( IM Publications, Manchester, 2003), p. 397.
21. R. T. Haasch, T.-Y. Lee, D. Gall, J. E. Greene, and I. Petrov, Surf. Sci. Spectra 7, 204 (2000).
22. Under present conditions of pb = 1.5 × 10−7 Torr the monolayer (ML) formation time is several seconds. Thus, the TiN spectra obtained from “Ref.1” are characteristic of a native TiN surface with ML coverage of adventitious C and O. The interaction between adsorbed species and TiN film is limited to the very first surface layer and should be clearly distinguished from the case of a few nanometers thick native oxide that forms upon air exposure. “Ref.1” and “Ref.2” core level spectra from TiN are only slightly changed as 90% of the signal intensity originates from deeper (unaffected) layers. Note also that the product of background pressure and 840 min-long exposure time in HV environment is more than seven orders of magnitude lower than for the 10 min-long air exposure.
23.Quantitative self-consistency implies that the component peaks from different core-level spectra assigned to the same chemical species (e.g., TiO2 components present both in the Ti 2p and O 1s spectra) should yield the area ratio in agreement with the stoichiometry (in this example 1:2).
24. A. Arranz and C. Palacio, Surf. Sci. 600, 2510 (2006).
25. I. Bertoti, M. Mohai, J. L. Sullivan, and S. O. Saied, Surf. Interface Anal. 21, 467473 (1994).
26. L. Porte, L. Roux, and J. Hanus, Phys. Rev. B 28, 3214 (1983).
27. J. Patscheider, N. Hellgren, R. T. Haasch, I. Petrov, and J. E. Greene, Phys. Rev. B 83, 125124 (2011).
28. G. Greczynski, J. Jensen, J. E. Greene, I. Petrov, and L. Hultman, Surf. Sci. Spectra 21, 35 (2014).
29. I. Strydom and S. Hofmann, J. Electron Spectrosc. Relat. Phenom. 56, 85 (1991).
30. D. Jaeger and J. Patscheider, J. Electron Spectrosc. Relat. Phenom. 185, 523 (2012).
31. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy ( Perkin-Elmer Corporation, Eden Prairie, MN, 1992).
32.NIST X-ray Photoelectron Spectroscopy Database, Version 4.1 ( National Institute of Standards and Technology, Gaithersburg, 2012),
33. I. Milošev, H.-H. Strehblow, B. Navinšek, and M. Metikoš-Huković, Surf. Interface Anal. 23, 529 (1995).
34. F. Esaka, K. Furuya, H. Shimada, M. Imamura, N. Matsubayashi, H. Sato, A. Nishijima, A. Kawana, H. Ichimura, and T. Kikuchi, J. Vac. Sci. Technol., A 15, 2521 (1997).
35.Alternative interpretation of the Ti 2p3/2 peak at 456.9 eV as being due to Ti2O3 would require a corresponding peak in the O 1s spectrum at 531.3 eV [Ref. 12] which is not observed.
36. I. Milošev, H.-H. Strehblow, and B. Navinšek, Surf. Coat. Technol. 74–75, 897 (1995).
37.See Appendix E, in Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, edited by D. Briggs and J. T. Grant ( IM Publications, Manchester, 2003).
38. G. Beamson and D. Briggs, High Resolution XPS of Organic Polymers: The Scienta ESCA 300 Database ( Wiley, Chichester, 1992).
39. T. A. Carlson, Surf. Interface Anal. 4, 125 (1982).
40. B. R. Strohmeier, Surf. Interface Anal. 15, 51 (1990).
41. S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Interface Anal. 43, 689 (2011).

Data & Media loading...


Article metrics loading...



Surface properties of refractory ceramic transition metal nitride thin films grown by magnetron sputtering are essential for resistance towards oxidation necessary in all modern applications. Here, typically neglected factors, including exposure to residual process gases following the growth and the venting temperature , each affecting the surface chemistry, are addressed. It is demonstrated for the TiN model materials system that has a substantial effect on the composition and thickness-evolution of the reacted surface layer and should therefore be reported. The phenomena are also shown to have impact on the reliable surface characterization by x-ray photoelectron spectroscopy.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd