Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/108/4/10.1063/1.4940982
1.
1. G.-H. Lee, R. C. Cooper, S. J. An, S. Lee, A. van der Zande, N. Petrone, A. G. Hammerberg, C. Lee, B. Crawford, W. Oliver, J. W. Kysar, and J. Hone, Science 340, 1073 (2013).
http://dx.doi.org/10.1126/science.1235126
2.
2. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).
http://dx.doi.org/10.1126/science.1157996
3.
3. K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. a. Dubonos, I. Grigorieva, and A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
4.
4. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, Nat. Nanotechnol. 5, 574 (2010).
http://dx.doi.org/10.1038/nnano.2010.132
5.
5. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Nature 457, 706 (2009).
http://dx.doi.org/10.1038/nature07719
6.
6. A. M. van der Zande, R. A. Barton, J. S. Alden, C. S. Ruiz-Vargas, W. S. Whitney, P. H. Q. Pham, J. Park, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Nano Lett. 10, 4869 (2010).
http://dx.doi.org/10.1021/nl102713c
7.
7. C. Y. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. L. Stormer, T. F. Heinz, and J. Hone, Nat. Nanotechnol. 4, 861 (2009).
http://dx.doi.org/10.1038/nnano.2009.267
8.
8. J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Science 315, 490 (2007).
http://dx.doi.org/10.1126/science.1136836
9.
9. Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
http://dx.doi.org/10.1038/nature04235
10.
10. W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda, ACS Nano 7, 791 (2013).
http://dx.doi.org/10.1021/nn305275h
11.
11. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat. Nanotechnol. 7, 699 (2012).
http://dx.doi.org/10.1038/nnano.2012.193
12.
12. J. Yoon, W. Park, G.-Y. Bae, Y. Kim, H. S. Jang, Y. Hyun, S. K. Lim, Y. H. Kahng, W.-K. Hong, B. H. Lee, and H. C. Ko, Small 9, 3295 (2013).
http://dx.doi.org/10.1002/smll.201300134
13.
13. H. Wang, L. L. Yu, Y. H. Lee, Y. M. Shi, A. Hsu, M. L. Chin, L. J. Li, M. Dubey, J. Kong, and T. Palacios, Nano Lett. 12, 4674 (2012).
http://dx.doi.org/10.1021/nl302015v
14.
14. S. Bertolazzi, D. Krasnozhon, and A. Kis, ACS Nano 7, 3246 (2013).
http://dx.doi.org/10.1021/nn3059136
15.
15. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, Nat. Nanotechnol. 8, 497 (2013).
http://dx.doi.org/10.1038/nnano.2013.100
16.
16. J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, Nat. Nanotechnol. 9, 268 (2014).
http://dx.doi.org/10.1038/nnano.2014.26
17.
17. A. Pospischil, M. M. Furchi, and T. Mueller, Nat. Nanotechnol. 9, 257 (2014).
http://dx.doi.org/10.1038/nnano.2014.14
18.
18. S. Wi, M. Chen, D. Li, H. Nam, E. Meyhofer, and X. Liang, Appl. Phys. Lett. 107, 062102 (2015).
http://dx.doi.org/10.1063/1.4928567
19.
19. S. Wi, H. Kim, M. K. Chen, H. Nam, L. J. Guo, E. Meyhofer, and X. G. Liang, ACS Nano 8, 5270 (2014).
http://dx.doi.org/10.1021/nn5013429
20.
20. S. B. Desai, G. Seol, J. S. Kang, H. Fang, C. Battaglia, R. Kapadia, J. W. Ager, J. Guo, and A. Javey, Nano Lett. 14, 4592 (2014).
http://dx.doi.org/10.1021/nl501638a
21.
21. H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund, S. T. Pantelides, and K. I. Bolotin, Nano Lett. 13, 3626 (2013).
http://dx.doi.org/10.1021/nl4014748
22.
22. A. D. Smith, F. Niklaus, A. Paussa, S. Vaziri, A. C. Fischer, M. Sterner, F. Forsberg, A. Delin, D. Esseni, P. Palestri, M. Östling, and M. C. Lemme, Nano Lett. 13, 3237 (2013).
http://dx.doi.org/10.1021/nl401352k
23.
23. D. Ovchinnikov, A. Allain, Y. S. Huang, D. Dumcenco, and A. Kis, ACS Nano 8, 8174 (2014).
http://dx.doi.org/10.1021/nn502362b
24.
24. N. Perea-López, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Gutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urías, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, and M. Terrones, Adv. Funct. Mater. 23, 5511 (2013).
http://dx.doi.org/10.1002/adfm.201300760
25.
25. S. Das and J. Appenzeller, Appl. Phys. Lett. 103, 103501 (2013).
http://dx.doi.org/10.1063/1.4820408
26.
26. T. Yan, X. Qiao, X. Liu, P. Tan, and X. Zhang, Appl. Phys. Lett. 105, 101901 (2014).
http://dx.doi.org/10.1063/1.4895471
27.
27. H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, Nano Lett. 12, 3788 (2012).
http://dx.doi.org/10.1021/nl301702r
28.
28. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).
http://dx.doi.org/10.1038/nnano.2010.279
29.
29. A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agrait, and G. Rubio-Bollinger, Adv. Mater. 24, 772 (2012).
http://dx.doi.org/10.1002/adma.201103965
30.
30. S. Bertolazzi, J. Brivio, and A. Kis, ACS Nano 5, 9703 (2011).
http://dx.doi.org/10.1021/nn203879f
31.
31. K. Liu, Q. M. Yan, M. Chen, W. Fan, Y. H. Sun, J. Suh, D. Y. Fu, S. Lee, J. Zhou, S. Tongay, J. Ji, J. B. Neaton, and J. Q. Wu, Nano Lett. 14, 5097 (2014).
http://dx.doi.org/10.1021/nl501793a
32.
32. M. M. Benameur, B. Radisavljevic, J. S. Heron, S. Sahoo, H. Berger, and A. Kis, Nanotechnology. 22, 125706 (2011).
http://dx.doi.org/10.1088/0957-4484/22/12/125706
33.
33. P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, Appl. Phys. Lett. 91, 063124 (2007).
http://dx.doi.org/10.1063/1.2768624
34.
34.See supplementary material at http://dx.doi.org/10.1063/1.4940982 for the details of patterning of SiO2/Si substrate, exfoliation, and transfer process of multilayer WSe2, characterization of AFM tip, calibration of force-deformation curves, 2D elastic modulus and pretension at different indentation depths, and pretension distribution for WSe2 membranes.[Supplementary Material]
35.
35. Y. Huang, E. Sutter, N. N. Shi, J. Zheng, T. Yang, D. Englund, H.-J. Gao, and P. Sutter, ACS Nano 9, 10612 (2015).
http://dx.doi.org/10.1021/acsnano.5b04258
36.
36. K. Nagashio, T. Yamashita, T. Nishimura, K. Kita, and A. Toriumi, J. Appl. Phys. 110, 024513 (2011).
http://dx.doi.org/10.1063/1.3611394
37.
37. A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant, and G. A. Steele, 2D Mater. 1, 011002 (2014).
http://dx.doi.org/10.1088/2053-1583/1/1/011002
38.
38. M. A. Meitl, Z. T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, Nat. Mater. 5, 33 (2006).
http://dx.doi.org/10.1038/nmat1532
39.
39. P. Nemes-Incze, Z. Osváth, K. Kamarás, and L. P. Biró, Carbon 46, 1435 (2008).
http://dx.doi.org/10.1016/j.carbon.2008.06.022
40.
40. H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong, Q. He, L. Wang, F. Ding, T. Yu, and H. Zhang, Small 9, 1974 (2013).
http://dx.doi.org/10.1002/smll.201202919
41.
41. W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee, Nano Lett. 13, 1983 (2013).
http://dx.doi.org/10.1021/nl304777e
42.
42. D. G. Mead and J. C. Irwin, Can. J. Phys. 55, 379 (1977).
http://dx.doi.org/10.1139/p77-052
43.
43. U. Komaragiri, M. R. Begley, and J. G. Simmonds, J. Appl. Mech. 72, 203 (2005).
http://dx.doi.org/10.1115/1.1827246
44.
44. M. R. Begley and T. J. Mackin, J. Mech. Phys. Solids. 52, 2005 (2004).
http://dx.doi.org/10.1016/j.jmps.2004.03.002
45.
45. J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, Appl. Phys. Lett. 102, 012111 (2013).
http://dx.doi.org/10.1063/1.4774090
46.
46. F. Zeng, W.-B. Zhang, and B.-Y. Tang, Chin. Phys. B 24, 097103 (2015).
http://dx.doi.org/10.1088/1674-1056/24/9/097103
47.
47. M. Kertesz and R. Hoffmann, J. Am. Chem. Soc. 106, 3453 (1984).
http://dx.doi.org/10.1021/ja00324a012
48.
48. L.-P. Feng, N. Li, M.-H. Yang, and Z.-T. Liu, Mater. Res. Bull. 50, 503 (2014).
http://dx.doi.org/10.1016/j.materresbull.2013.11.016
49.
49. M. F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, Phys. Rev. Lett. 84, 5552 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.5552
50.
50. A. Kis, D. Mihailovic, M. Remskar, A. Mrzel, A. Jesih, I. Piwonski, A. J. Kulik, W. Benoît, and L. Forró, Adv. Mater. 15, 733 (2003).
http://dx.doi.org/10.1002/adma.200304549
51.
51. L. Sekaric, J. M. Parpia, H. G. Craighead, T. Feygelson, B. H. Houston, and J. E. Butler, Appl. Phys. Lett. 81, 4455 (2002).
http://dx.doi.org/10.1063/1.1526941
52.
52. Y. T. Yang, K. L. Ekinci, X. M. H. Huang, L. M. Schiavone, M. L. Roukes, C. A. Zorman, and M. Mehregany, Appl. Phys. Lett. 78, 162 (2001).
http://dx.doi.org/10.1063/1.1338959
53.
53. M. K. Agarwal and P. A. Wani, Mater. Res. Bull. 14, 825 (1979).
http://dx.doi.org/10.1016/0025-5408(79)90144-2
54.
54. E. Grady, E. Mastropaolo, T. Chen, A. Bunting, and R. Cheung, Microelectron. Eng. 119, 105 (2014).
http://dx.doi.org/10.1016/j.mee.2014.02.036
55.
55. J. W. Suk, K. Kirk, Y. Hao, N. A. Hall, and R. S. Ruoff, Adv. Mater. 24, 6342 (2012).
http://dx.doi.org/10.1002/adma.201201782
56.
56. N. M. Bhatia and W. Nachbar, Int. J. Nonlinear Mech. 3, 307 (1968).
http://dx.doi.org/10.1016/0020-7462(68)90004-8
57.
57. T. Ando, K. Sato, M. Shikida, T. Yoshioka, Y. Yoshikawa, and T. Kawabata, paper presented at Proceedings of the 1997 International Symposium on Micromechatronics and Human Science (1997).
58.
58. D.-H. Kim, J.-H. Ahn, W. M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, and J. A. Rogers, Science 320, 507 (2008).
http://dx.doi.org/10.1126/science.1154367
59.
59. I. D. Johnston, D. K. McCluskey, C. K. L. Tan, and M. C. Tracey, J. Micromech. Microeng. 24, 035017 (2014).
http://dx.doi.org/10.1088/0960-1317/24/3/035017
http://aip.metastore.ingenta.com/content/aip/journal/apl/108/4/10.1063/1.4940982
Loading
/content/aip/journal/apl/108/4/10.1063/1.4940982
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/108/4/10.1063/1.4940982
2016-01-27
2016-12-11

Abstract

We report the experimental determination of the elastic properties of suspended multilayer WSe, a promising two-dimensional (2D) semiconducting material combined with high optical quality. The suspended WSe membranes have been fabricated by mechanical exfoliation of bulk WSe and transfer of the exfoliated multilayer WSe flakes onto SiO/Si substrates pre-patterned with hole arrays. Then, indentation experiments have been performed on these membranes with an atomic force microscope. The results show that the 2D elastic modulus of the multilayer WSe membranes increases linearly while the prestress decreases linearly as the number of layers increases. The interlayer interaction in WSe has been observed to be strong enough to prevent the interlayer sliding during the indentation experiments. The Young's modulus of multilayer WSe (167.3 ± 6.7 GPa) is statistically independent of the thickness of the membranes, whose value is about two thirds of other most investigated 2D semiconducting transition metal dichalcogenides, namely, MoS and WS. Moreover, the multilayer WSe can endure ∼12.4 GPa stress and ∼7.3% strain without fracture or mechanical degradation. The 2D WSe can be an attractive semiconducting material for application in flexible optoelectronic devices and nano-electromechanical systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/108/4/1.4940982.html;jsessionid=AR2fMCcuDkYljR0OcPkb77rb.x-aip-live-02?itemId=/content/aip/journal/apl/108/4/10.1063/1.4940982&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/108/4/10.1063/1.4940982&pageURL=http://scitation.aip.org/content/aip/journal/apl/108/4/10.1063/1.4940982'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,