Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. V. K. Pecharsky and K. A. Gschneidner, Phys. Rev. Lett. 78, 4494 (1997).
2. A. A. Cherechukin, T. Takagi, M. Matsumoto, and V. D. Buchel'Nikov, Phys. Lett. A 326, 146 (2004).
3. M. Pasquale, C. P. Sasso, L. H. Lewis, L. Giudici, T. Lograsso, and D. Schlagel, Phys. Rev. B 72, 094435 (2005).
4. T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Manosa, and A. Planes, Nat. Mater. 4, 450 (2005).
5. M. Khan, S. Stadler, and N. Ali, J. Appl. Phys. 101, 09C515 (2007).
6. B. Hernando, J. L. S. Llamazares, J. D. Santos, V. M. Prida, D. Baldomir, D. Serantes, R. Varga, and J. Gonzalez, Appl. Phys. Lett. 92, 132507 (2008).
7. A. Planes, L. Manosa, and M. Acet, J. Phys.: Condens. Matter 21, 233201 (2009).
8. J. Liu, T. Gottschall, K. P. Skokov, J. D. Moore, and O. Gutfleisch, Nat. Mater. 11, 620 (2012).
9. Z. Li, Y. Zhang, C. F. Sánchez-Valdés, J. L. Sánchez Llamazares, C. Esling, X. Zhao, and L. Zuo, Appl. Phys. Lett. 104, 44101 (2014).
10. K. Ullakko, J. K. Huang, C. Kantner, R. C. O' Handley, and V. V. Kokorin, Appl. Phys. Lett. 69, 1966 (1996).
11. S. J. Murray, M. Marioni, S. M. Allen, R. C. O'Handley, and T. A. Lograsso, Appl. Phys. Lett. 77, 886 (2000).
12. A. Sozinov, A. A. Likhachev, N. Lanska, K. Ullakko, and V. K. Lindroos, J. Phys. IV 112, 955 (2003).
13. X. Zhou, H. Kunkel, G. Williams, S. Zhang, and X. Desheng, J. Magn. Magn. Mater. 372, 305 (2006).
14. S. Stadler, M. Khan, J. Mitchell, N. Ali, A. M. Gomes, I. Dubenko, A. Y. Takeuchi, and A. P. Guimarães, Appl. Phys. Lett. 88, 192511 (2006).
15. C. S. Mejiá, A. M. Gomes, and L. A. S. de Oliveira, J. Appl. Phys. 111, 07A923 (2012).
16. A. M. Gomes, M. Khan, S. Stadler, N. Ali, I. Dubenko, A. Y. Takeuchi, and A. P. Guimarães, J. Appl. Phys. 99, 08Q106 (2006).
17. J. F. Duan, Y. Long, B. Bao, H. Zhang, R. C. Ye, Y. Q. Chang, F. R. Wan, and G. H. Wu, J. Appl. Phys. 103, 063911 (2008).
18. S. Roy, E. Blackburn, S. M. Valvidares, M. R. Fitzsimmons, S. C. Vogel, M. Khan, I. Dubenko, S. Stadler, N. Ali, S. K. Sinha, and J. B. Kortright, Phys. Rev. B 79, 235127 (2009).
19. C. Huang, Y. Wang, Z. Tang, X. Liao, S. Yang, and X. Song, J. Alloys Compd. 630, 244 (2015).
20. J. Wang, H. Bai, C. Jiang, Y. Li, and H. Xu, Mater. Sci. Eng. A 527, 1975 (2010).
21. P. P. Li, J. M. Wang, and C. B. Jiang, J. Phys. D: Appl. Phys. 44, 285002 (2011).
22. I. Glavatskyy, N. Glavatska, A. Dobrinsky, J. U. Hoffmann, O. Söderberg, and S. P. Hannula, Scr. Mater. 56, 565 (2007).
23. R. Niemann, O. Heczko, L. Schultz, and S. Fähler, Appl. Phys. Lett. 97, 222507 (2010).
24. N. S. Bingham, H. Wang, F. Qin, H. X. Peng, J. F. Sun, V. Franco, H. Srikanth, and M. H. Phan, Appl. Phys. Lett. 101, 102407 (2012).
25. F. X. Qin, N. S. Bingham, H. Wang, H. X. Peng, J. F. Sun, V. Franco, S. C. Yu, H. Srikanth, and M. H. Phan, Acta Mater. 61, 1284 (2013).
26. N. Scheerbaum, D. Hinz, O. Gutfleisch, K. H. Müller, and L. Schultz, Acta Mater. 55, 2707 (2007).
27. S. Glock, X. X. Zhang, N. J. Kucza, P. Müllner, and V. Michaud, Composites, Part A 63, 68 (2014).
28. M. F. Qian, X. X. Zhang, L. S. Wei, L. Geng, and H. X. Peng, J. Alloys Compd. 645, 335 (2015).
29. M. F. Qian, X. X. Zhang, C. Witherspoon, J. F. Sun, and P. Müllner, J. Alloys Compd. 577, S296 (2013).
30. M. F. Qian, X. X. Zhang, L. S. Wei, P. G. Martin, J. F. Sun, L. Geng, T. B. Scott, L. V. Panina, and H. X. Peng, J. Alloys Compd. 660, 244251 (2015).
31.See supplementary material at for the information for the macro-morphology of the melt-extracted Ni49.4Mn26.2Ga20.7Cu3.7 microwires (Fig. S1), which exhibit a diameter of 20–80 μm and a length of 30–150 mm, and the X-ray diffraction patterns of the parent ingot, as-extracted and annealed microwires (Fig. S2) showing that they contain seven-layer modulated (7M) martensite phase with a monoclinic incommensurate superstructure. The DSC and M-T curves (Fig. S3) show that the magnetostructural coupling occurs in the as-extracted microwires as well, and that the magnetization is much lower compared with the annealed microwires measured at the same field strength (see Fig. 3(a)). The maximum entropy change ΔSm, full width at half maximum (FWHM), and refrigeration capacity RC of the annealed Ni-Mn-Ga-Cu microwire and some other giant MCE alloys are summarized in Table SI.[Supplementary Material]
32. G. Lotze, G. Stephani, W. Loser, and H. Fiedler, Mater. Sci. Eng. A 133, 680 (1991).
33. L. Righi, F. Albertini, E. Villa, A. Paoluzi, G. Calestani, V. Chernenko, S. Besseghini, C. Ritter, and F. Passaretti, Acta Mater. 56, 4529 (2008).
34. O. Heczko, P. Svec, D. Janickovic, and K. Ullakko, IEEE Trans. Magn. 38, 2841 (2002).
35. F. Albertini, S. Besseghini, A. Paoluzi, L. Pareti, M. Pasquale, F. Passaretti, C. P. Sasso, A. Stantero, and E. Villa, J. Magn. Magn. Mater. 242, 1421 (2002).
36. J. Gutierrez, J. M. Barandiaran, P. Lazpita, C. Segui, and E. Cesari, Sens. Actuators, A 129, 163 (2006).
37. Y. Zhang, R. A. Hughes, J. F. Britten, P. A. Dube, J. S. Preston, G. A. Botton, and M. Niewczas, J. Appl. Phys. 110, 013910 (2011).
38. X. X. Zhang, S. P. Miao, and J. F. Sun, Trans. Nonferrous Met. Soc. China 24, 3152 (2014).
39. Y. F. Liu, X. X. Zhang, D. W. Xing, H. X. Shen, D. M. Chen, J. S. Liu, and J. F. Sun, J. Alloys Compd. 616, 184 (2014).
40. S. K. Srivastava, V. K. Srivastava, and R. Chatterjee, Solid State Commun. 152, 372 (2012).
41. Y. Zhang, L. L. Zheng, Q. Zheng, X. Q. Li, M. Li, J. Du, and A. Yan, Sci. Rep. 5, 11010 (2015).
42. S. Y. Dan'Kov, A. M. Tishin, V. K. Pecharsky, and K. A. Gschneidner, Jr., Phys. Rev. B 57, 3478 (1998).
43. O. Gutfleisch, A. Yan, and K. H. Müller, J. Appl. Phys. 97, 10M305 (2005).

Data & Media loading...


Article metrics loading...



Ni-Mn-Ga-X microwires were produced by melt-extraction technique on a large scale. Their shape memory effect,superelasticity, and damping capacity have been demonstrated. Here, the excellent magnetocaloric effect was revealed in Ni-Mn-Ga-Cu microwires produced by melt-extraction and subsequent annealing. The overlap of the martensitic and magnetic transformations, i.e., magnetostructural coupling, was achieved in the annealed microwires. The magnetostructural coupling and wide martensitic transformation temperature range contribute to a large magnetic entropy change of −8.3 J/kg K with a wide working temperature interval of ∼13 K under a magnetic field of 50 kOe. Accordingly, a high refrigeration capacity of ∼78 J/kg was produced in the annealed microwires.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd