Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/108/7/10.1063/1.4942387
1.
1. T. M. Shaw, S. Trolier-McKinstry, and P. C. McIntyre, Annu. Rev. Mater. Sci. 30, 263 (2000).
http://dx.doi.org/10.1146/annurev.matsci.30.1.263
2.
2. E. K. H. Salje, X. Wang, X. Ding, and J. Sun, Phys. Rev. B 90, 064103 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.064103
3.
3. E. Dul'kin, E. K. H. Salje, O. Aktas, R. W. Whatmore, and M. Roth, Appl. Phys. Lett. 105, 212901 (2014).
http://dx.doi.org/10.1063/1.4902511
4.
4. K. A. Dahmen, Y. Ben-Zion, and J. T. Uhl, Phys. Rev. Lett. 102, 175501 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.175501
5.
5. O. Perković, K. A. Dahmen, and J. P. Sethna, Phys. Rev. B 59, 6106 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.6106
6.
6. E. K. H. Salje, X. Ding, Z. Zhao, and T. Lookman, Appl. Phys. Lett. 100, 222905 (2012).
http://dx.doi.org/10.1063/1.4724192
7.
7. X. Ding, Z. Zhao, T. Lookman, and E. K. H. Salje, Adv. Mater. 24, 5385 (2012).
http://dx.doi.org/10.1002/adma.201200986
8.
8. X. Ding, T. Lookman, Z. Zhao, J. Sun, and E. K. H. Salje, Phys. Rev. B 87, 094109 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.094109
9.
9. Z. Zhao, X. Ding, T. Lookman, J. Sun, and E. K. H. Salje, Adv. Mater. 25, 3244 (2013).
http://dx.doi.org/10.1002/adma.201300655
10.
10. J. P. Sethna, K. A. Dahmen, and C. R. Myers, Nature 410, 242 (2001).
http://dx.doi.org/10.1038/35065675
11.
11. G. Tsekenis, N. Goldenfeld, and K. A. Dahmen, Phys. Rev. Lett. 106, 105501 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.105501
12.
12. M. J. Alavaa, P. K. V. V. Nukala, and S. Zapperi, Adv. Phys. 55, 349 (2006).
http://dx.doi.org/10.1080/00018730300741518
13.
13. D. Bonamy, S. Santucci, and L. Ponson, Phys. Rev. Lett. 101, 045501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.045501
14.
14. F. Colaiori, Adv. Phys. 57, 287 (2008).
http://dx.doi.org/10.1080/00018730802420614
15.
15. E. K. H. Salje and K. A. Dahmen, Annu. Rev. Condens. Matter Phys. 5, 233 (2014).
http://dx.doi.org/10.1146/annurev-conmatphys-031113-133838
16.
16. J. Baró, Á. Corral, X. Illa, A. Planes, E. K. H. Salje, W. Schranz, D. E. Soto-Parra, and E. Vives, Phys. Rev. Lett. 110, 088702 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.088702
17.
17. M. C. Gallardo, J. Manchado, F. J. Romero, J. del Cerro, E. K. H. Salje, A. Planes, E. Vives, R. Romero, and M. Stipcich, Phys. Rev. B 81, 174102 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.174102
18.
18. E. K. H. Salje, E. Dul'kin, and M. Roth, Appl. Phys. Lett. 106, 152903 (2015).
http://dx.doi.org/10.1063/1.4918746
19.
19. A. Saxena and A. Planes, Mesoscopic Phenomena in Multifunctional Materials ( Springer, Berlin, 2014).
20.
20. E. Vives, J. Ortın, L. Manosa, I. Rafols, R. Perez-Magrane, and A. Planes, Phys. Rev. Lett. 72, 1694 (1994).
http://dx.doi.org/10.1103/PhysRevLett.72.1694
21.
21. J. Baro, S. Dixon, R. S. Edwards, Y. Fan, D. S. Keeble, L. Manosa, A. Planes, and E. Vives, Phys. Rev. B 88, 174108 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.174108
22.
22. E. K. H. Salje, J. Koppensteiner, M. Reinecker, W. Schranz, and A. Planes, Appl. Phys. Lett. 95, 231908 (2009).
http://dx.doi.org/10.1063/1.3269578
23.
23. Z. Balogh, L. Daroczi, L. Harasztosi, D. L. Beke, T. A. Lograsso, and D. L. Schlagel, Mater. Trans. 47, 631 (2006).
http://dx.doi.org/10.2320/matertrans.47.631
24.
24. K. S. Ryu, H. Akinaga, and S. C. Shin, Nat. Phys. 3, 547 (2007).
http://dx.doi.org/10.1038/nphys659
25.
25. J. Antonaglia, W. J. Wright, X. Gu, R. R. Byer, T. C. Hufnagel, and K. A. Dahmen, Phys. Rev. Lett. 112, 155501 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.155501
26.
26. G. Tsekenis, J. T. Uhl, N. Goldenfeld, and K. A. Dahmen, Europhys. Lett. 101, 36003 (2013).
http://dx.doi.org/10.1209/0295-5075/101/36003
27.
27. K. A. Dahmen, Y. Ben-Zion, and J. T. Uhl, Nat. Phys. 7, 554 (2011).
http://dx.doi.org/10.1038/nphys1957
28.
28. K. Martens, L. Bocquet, and J.-L. Barrat, Soft Matter 8, 4197 (2012).
http://dx.doi.org/10.1039/c2sm07090a
29.
29. O.-A. Adami, Ž. L. Jelić, C. Xue, M. Abdel-Hafiez, B. Hackens, V. V. Moshchalkov, M. V. Milošević, J. Van de Vondel, and A. V. Silhanek, Phys. Rev. B 92, 134506 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.134506
30.
30. Z. Zhao, X. Ding, J. Sun, and E. K. H. Salje, J. Phys.: Condens. Matter 26, 142201 (2014).
http://dx.doi.org/10.1088/0953-8984/26/14/142201
31.
31. E. K. H. Salje, X. Ding, and Z. Zhao, Phys. Rev. B 83, 104109 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.104109
32.
32. S. Plimpton, J. Comput. Phys. 117, 1 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
33.
33. S. Nosé, J. Chem. Phys. 81, 511 (1984).
http://dx.doi.org/10.1063/1.447334
34.
34. W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
35.
35. R. J. Harrison and E. K. H. Salje, Appl. Phys. Lett. 97, 021907 (2010).
http://dx.doi.org/10.1063/1.3460170
http://aip.metastore.ingenta.com/content/aip/journal/apl/108/7/10.1063/1.4942387
Loading
/content/aip/journal/apl/108/7/10.1063/1.4942387
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/108/7/10.1063/1.4942387
2016-02-17
2016-12-10

Abstract

Computer simulation of a ferroelastic switching process shows avalanche formation with universal averaged temporal avalanche profiles ⟨J(t)⟩, where J(t) is the avalanche “amplitude” at time t. The profiles are derived for the three most commonly used “jerk”-singularities, namely, the total change of the potential energy via 2, the energy drop  = −, and the stress drop  = − The avalanches follow, within the time resolution of our modeling, a universal profile J(t)/J = 1 − 4(t/t − 0.5)2 in the a-thermal regime and the thermal regime. Broadening of the profiles towards a 4th order parabola arises from peak overlap or peak splitting. All profiles are symmetric around t/t = 0.5 and are expected to hold for switching processes in ferroic materials when the correlations during the avalanche are elastic in origin. High frequency applications of ferroic switching are constrained by this avalanchenoise and its characteristic temporal distribution function will determine the bandwidth of any stored or transmitted signal.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/108/7/1.4942387.html;jsessionid=rPGRf2PSkYQlqL_dsxO0kTgY.x-aip-live-06?itemId=/content/aip/journal/apl/108/7/10.1063/1.4942387&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/108/7/10.1063/1.4942387&pageURL=http://scitation.aip.org/content/aip/journal/apl/108/7/10.1063/1.4942387'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,