Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/108/8/10.1063/1.4942452
1.
1. B. S. Williams, Nat. Photonics 1, 517 (2007).
http://dx.doi.org/10.1038/nphoton.2007.166
2.
2. S. Fathololoumi, E. Dupont, C. Chan, Z. Wasilewski, S. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. Liu, Opt. Express 20, 3866 (2012).
http://dx.doi.org/10.1364/OE.20.003866
3.
3. L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, Electron. Lett. 50, 309 (2014).
http://dx.doi.org/10.1049/el.2013.4035
4.
4. P. Dean, A. Valavanis, J. Keeley, K. Bertling, Y. Lim, R. Alhathlool, A. Burnett, L. Li, S. Khanna, D. Indjin et al., J. Phys. D: Appl. Phys. 47, 374008 (2014).
http://dx.doi.org/10.1088/0022-3727/47/37/374008
5.
5. H.-W. Hübers, S. Pavlov, H. Richter, A. Semenov, L. Mahler, A. Tredicucci, H. Beere, and D. Ritchie, Appl. Phys. Lett. 89, 061115 (2006).
http://dx.doi.org/10.1063/1.2335803
6.
6. J. Kröll, J. Darmo, S. S. Dhillon, X. Marcadet, M. Calligaro, C. Sirtori, and K. Unterrainer, Nature 449, 698 (2007).
http://dx.doi.org/10.1038/nature06208
7.
7. N. Jukam, S. S. Dhillon, D. Oustinov, J. Madéo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies et al., Nat. Photonics 3, 715 (2009).
http://dx.doi.org/10.1038/nphoton.2009.213
8.
8. D. Oustinov, N. Jukam, R. Rungsawang, J. Madéo, S. Barbieri, P. Filloux, C. Sirtori, X. Marcadet, J. Tignon, and S. Dhillon, Nat. Commun. 1, 69 (2010).
http://dx.doi.org/10.1038/ncomms1068
9.
9. J. Maysonnave, N. Jukam, M. Ibrahim, K. Maussang, J. Madéo, P. Cavalie, P. Dean, S. P. Khanna, D. Steenson, E. H. Linfield et al., Opt. Lett. 37, 731 (2012).
http://dx.doi.org/10.1364/OL.37.000731
10.
10. S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, C. Sirtori, S. P. Khanna, E. H. Linfield, and A. G. Davies, Nat. Photonics 5, 306 (2011).
http://dx.doi.org/10.1038/nphoton.2011.49
11.
11. J. R. Freeman, J. Maysonnave, N. Jukam, P. Cavalié, K. Maussang, H. E. Beere, D. A. Ritchie, J. Mangeney, S. S. Dhillon, and J. Tignon, Appl. Phys. Lett. 101, 181115 (2012).
http://dx.doi.org/10.1063/1.4765660
12.
12. A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, Phys. Rev. A 77, 053804 (2008).
http://dx.doi.org/10.1103/PhysRevA.77.053804
13.
13. R. P. Green, A. Tredicucci, N. Q. Vinh, B. Murdin, C. Pidgeon, H. E. Beere, and D. A. Ritchie, Phys. Rev. B 80, 075303 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.075303
14.
14. H. Choi, L. Diehl, Z.-K. Wu, M. Giovannini, J. Faist, F. Capasso, and T. B. Norris, Phys. Rev. Lett. 100, 167401 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.167401
15.
15. W. Kuehn, W. Parz, P. Gaal, K. Reimann, M. Woerner, T. Elsaesser, T. Müller, J. Darmo, K. Unterrainer, M. Austerer et al., Appl. Phys. Lett. 93, 151106 (2008).
http://dx.doi.org/10.1063/1.2998648
16.
16. J. R. Freeman, J. Maysonnave, S. Khanna, E. H. Linfield, A. G. Davies, S. S. Dhillon, and J. Tignon, Phys. Rev. A 87, 063817 (2013).
http://dx.doi.org/10.1103/PhysRevA.87.063817
17.
17. M. Tonouchi, N. Kawasaki, T. Yoshimura, H. Wald, and P. Seidel, Jpn. J. Appl. Phys., Part 2 41, L706 (2002).
http://dx.doi.org/10.1143/JJAP.41.L706
18.
18. J. R. Freeman, O. Marshall, H. E. Beere, and D. A. Ritchie, Appl. Phys. Lett. 93, 191119 (2008).
http://dx.doi.org/10.1063/1.3030881
19.
19. L. M. Frantz and J. S. Nodvik, J. Appl. Phys. 34, 2346 (1963).
http://dx.doi.org/10.1063/1.1702744
20.
20. R. Köhler, R. C. Iotti, A. Tredicucci, and F. Rossi, Appl. Phys. Lett. 79, 3920 (2001).
http://dx.doi.org/10.1063/1.1423777
21.
21. C. Y. Wang, L. Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kartner, M. A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider et al., Opt. Express 17, 12929 (2009).
http://dx.doi.org/10.1364/OE.17.012929
22.
22. C. R. Menyuk and M. A. Talukder, Phys. Rev. Lett. 102, 023903 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.023903
http://aip.metastore.ingenta.com/content/aip/journal/apl/108/8/10.1063/1.4942452
Loading
/content/aip/journal/apl/108/8/10.1063/1.4942452
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/108/8/10.1063/1.4942452
2016-02-22
2016-09-26

Abstract

The gain recovery time of a bound-to-continuum terahertz frequency quantum cascade laser, operating at 1.98 THz, has been measured using broadband terahertz-pump-terahertz-probe spectroscopy. The recovery time is found to reduce as a function of current density, attaining a value of 18 ps as the laser is brought close to threshold. We attribute this reduction to improved coupling efficiency between the injector state and the upper lasing level as the active region aligns.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/108/8/1.4942452.html;jsessionid=A_zDq78vKOM9KG1YFuoiTt1W.x-aip-live-02?itemId=/content/aip/journal/apl/108/8/10.1063/1.4942452&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/108/8/10.1063/1.4942452&pageURL=http://scitation.aip.org/content/aip/journal/apl/108/8/10.1063/1.4942452'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,