Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, Nature 425, 817 (2003).
2. S. J. C. Yates, J. J. A. Baselmans, A. Endo, R. M. J. Janssen, L. Ferrari, P. Diener, and A. M. Baryshev, Appl. Phys. Lett. 99, 073505 (2011).
3. R. M. J. Janssen, J. J. A. Baselmans, A. Endo, L. Ferrari, S. J. C. Yates, A. M. Baryshev, and T. M. Klapwijk, Appl. Phys. Lett. 103, 203503 (2013).
4. P. D. Mauskopf, S. Doyle, P. Barry, S. Rowe, A. Bidead, P. A. R. Ade, C. Tucker, E. Castillo, A. Monfardini, J. Goupy, and M. Calvo, J. Low Temp. Phys. 176, 545 (2014).
5. P. de Visser, J. J. A. Baselmans, J. Bueno, N. Llombart, and T. M. Klapwijk, Nat. Commun. 5, 3130 (2014).
6. J. Hubmayr, J. Beall, D. Becker, H.-M. Cho, M. J. Devlin, B. Dober, C. Groppi, G. C. Hilton, K. D. Irwin, D. Li et al., Appl. Phys. Lett. 106, 073505 (2015).
7. S. Doyle, P. Mauskopf, J. Zhang, A. Monfardini, L. J. Swenson, J. J. A. Baselmans, S. J. C. Yates, and M. Roesch, Proc. SPIE 7741, 77410M (2010).
8. H. McCarrick, D. Flanigan, G. Jones, B. R. Johnson, P. A. R. Ade, D. Araujo, K. Bradford, R. Cantor, G. Che, P. Day et al., Rev. Sci. Instrum. 85, 123117 (2014).
9.See for the software used to read out the detectors and analyze the data.
10.See supplementary material at for a list of the millimeter-wave source components, analysis of TLS noise and recombination noise contributions, and detail of the spectral density fitting process.[Supplementary Material]
11. P. L. Richards, J. Appl. Phys. 76, 1 (1994).
12. J. Zmuidzinas, Appl. Opt. 42, 4989 (2003).
13. J. Zmuidzinas, Annu. Rev. Condens. Matter Phys. 3, 169 (2012).
14. J. Gao, M. Daal, J. M. Martinis, A. Vayonakis, J. Zmuidzinas, B. Sadoulet, B. A. Mazin, P. K. Day, and H. G. LeDuc, Appl. Phys. Lett. 92, 212504 (2008).
15. J. Zmuidzinas, ApJ 813, 17 (2015).
16. R. Hanbury Brown and R. Q. Twiss, Proc. R. Soc. A 242, 300 (1957).
17. R. Loudon, The Quantum Theory of Light, 3rd ed. ( Oxford University Press, Oxford, 2002).
18. R. J. Glauber, see, “Nobel Lecture: One Hundred Years of Light Quanta.”
19. P. de Visser, S. J. C. Yates, T. Guruswamy, D. J. Goldie, S. Withington, A. Neto, N. Llombart, A. M. Baryshev, T. M. Klapwijk, and J. J. A. Baselmans, Appl. Phys. Lett. 106, 252602 (2015).
20. T. Guruswamy, D. J. Goldie, and S. Withington, Supercond. Sci. Technol. 27, 055012 (2014).

Data & Media loading...


Article metrics loading...



We report photon-noise limited performance of horn-coupled, aluminum lumped-element kinetic inductance detectors at millimeter wavelengths. The detectors are illuminated by a millimeter-wave source that uses an active multiplier chain to produce radiation between 140 and 160 GHz. We feed the multiplier with either amplified broadband noise or a continuous-wave tone from a microwave signal generator. We demonstrate that the detector response over a 40 dB range of source power is well-described by a simple model that considers the number of quasiparticles. The detector noise-equivalent power (NEP) is dominated by photonnoise when the absorbed power is greater than approximately 1 pW, which corresponds to , referenced to absorbed power. At higher source power levels, we observe the relationships between noise and power expected from the photon statistics of the source signal: for broadband (chaotic) illumination and for continuous-wave (coherent) illumination.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd