Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/108/8/10.1063/1.4942804
1.
1. P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, Nature 425, 817 (2003).
http://dx.doi.org/10.1038/nature02037
2.
2. S. J. C. Yates, J. J. A. Baselmans, A. Endo, R. M. J. Janssen, L. Ferrari, P. Diener, and A. M. Baryshev, Appl. Phys. Lett. 99, 073505 (2011).
http://dx.doi.org/10.1063/1.3624846
3.
3. R. M. J. Janssen, J. J. A. Baselmans, A. Endo, L. Ferrari, S. J. C. Yates, A. M. Baryshev, and T. M. Klapwijk, Appl. Phys. Lett. 103, 203503 (2013).
http://dx.doi.org/10.1063/1.4829657
4.
4. P. D. Mauskopf, S. Doyle, P. Barry, S. Rowe, A. Bidead, P. A. R. Ade, C. Tucker, E. Castillo, A. Monfardini, J. Goupy, and M. Calvo, J. Low Temp. Phys. 176, 545 (2014).
http://dx.doi.org/10.1007/s10909-013-1069-1
5.
5. P. de Visser, J. J. A. Baselmans, J. Bueno, N. Llombart, and T. M. Klapwijk, Nat. Commun. 5, 3130 (2014).
http://dx.doi.org/10.1038/ncomms4130
6.
6. J. Hubmayr, J. Beall, D. Becker, H.-M. Cho, M. J. Devlin, B. Dober, C. Groppi, G. C. Hilton, K. D. Irwin, D. Li et al., Appl. Phys. Lett. 106, 073505 (2015).
http://dx.doi.org/10.1063/1.4913418
7.
7. S. Doyle, P. Mauskopf, J. Zhang, A. Monfardini, L. J. Swenson, J. J. A. Baselmans, S. J. C. Yates, and M. Roesch, Proc. SPIE 7741, 77410M (2010).
http://dx.doi.org/10.1117/12.857341
8.
8. H. McCarrick, D. Flanigan, G. Jones, B. R. Johnson, P. A. R. Ade, D. Araujo, K. Bradford, R. Cantor, G. Che, P. Day et al., Rev. Sci. Instrum. 85, 123117 (2014).
http://dx.doi.org/10.1063/1.4903855
9.
9.See http://www.github.com/ColumbiaCMB for the software used to read out the detectors and analyze the data.
10.
10.See supplementary material at http://dx.doi.org/10.1063/1.4942804 for a list of the millimeter-wave source components, analysis of TLS noise and recombination noise contributions, and detail of the spectral density fitting process.[Supplementary Material]
11.
11. P. L. Richards, J. Appl. Phys. 76, 1 (1994).
http://dx.doi.org/10.1063/1.357128
12.
12. J. Zmuidzinas, Appl. Opt. 42, 4989 (2003).
http://dx.doi.org/10.1364/AO.42.004989
13.
13. J. Zmuidzinas, Annu. Rev. Condens. Matter Phys. 3, 169 (2012).
http://dx.doi.org/10.1146/annurev-conmatphys-020911-125022
14.
14. J. Gao, M. Daal, J. M. Martinis, A. Vayonakis, J. Zmuidzinas, B. Sadoulet, B. A. Mazin, P. K. Day, and H. G. LeDuc, Appl. Phys. Lett. 92, 212504 (2008).
http://dx.doi.org/10.1063/1.2937855
15.
15. J. Zmuidzinas, ApJ 813, 17 (2015).
http://dx.doi.org/10.1088/0004-637X/813/1/17
16.
16. R. Hanbury Brown and R. Q. Twiss, Proc. R. Soc. A 242, 300 (1957).
http://dx.doi.org/10.1098/rspa.1957.0177
17.
17. R. Loudon, The Quantum Theory of Light, 3rd ed. ( Oxford University Press, Oxford, 2002).
18.
18. R. J. Glauber, see http://www.nobelprize.org, “Nobel Lecture: One Hundred Years of Light Quanta.”
19.
19. P. de Visser, S. J. C. Yates, T. Guruswamy, D. J. Goldie, S. Withington, A. Neto, N. Llombart, A. M. Baryshev, T. M. Klapwijk, and J. J. A. Baselmans, Appl. Phys. Lett. 106, 252602 (2015).
http://dx.doi.org/10.1063/1.4923097
20.
20. T. Guruswamy, D. J. Goldie, and S. Withington, Supercond. Sci. Technol. 27, 055012 (2014).
http://dx.doi.org/10.1088/0953-2048/27/5/055012
http://aip.metastore.ingenta.com/content/aip/journal/apl/108/8/10.1063/1.4942804
Loading
/content/aip/journal/apl/108/8/10.1063/1.4942804
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/108/8/10.1063/1.4942804
2016-02-25
2016-12-03

Abstract

We report photon-noise limited performance of horn-coupled, aluminum lumped-element kinetic inductance detectors at millimeter wavelengths. The detectors are illuminated by a millimeter-wave source that uses an active multiplier chain to produce radiation between 140 and 160 GHz. We feed the multiplier with either amplified broadband noise or a continuous-wave tone from a microwave signal generator. We demonstrate that the detector response over a 40 dB range of source power is well-described by a simple model that considers the number of quasiparticles. The detector noise-equivalent power (NEP) is dominated by photonnoise when the absorbed power is greater than approximately 1 pW, which corresponds to , referenced to absorbed power. At higher source power levels, we observe the relationships between noise and power expected from the photon statistics of the source signal: for broadband (chaotic) illumination and for continuous-wave (coherent) illumination.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/108/8/1.4942804.html;jsessionid=2qJrDQ21DReteKOEqUW0I5Sp.x-aip-live-02?itemId=/content/aip/journal/apl/108/8/10.1063/1.4942804&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/108/8/10.1063/1.4942804&pageURL=http://scitation.aip.org/content/aip/journal/apl/108/8/10.1063/1.4942804'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,