Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/108/9/10.1063/1.4943077
1.
1. P. D. C. King and T. D. Veal, J. Phys.: Condens. Matter 23, 334214 (2011).
http://dx.doi.org/10.1088/0953-8984/23/33/334214
2.
2. M. C. Beard, J. M. Luther, and A. J. Nozik, Nat. Nanotechnol. 9, 951 (2014).
http://dx.doi.org/10.1038/nnano.2014.292
3.
3. D. C. Neo, C. Cheng, S. D. Stranks, S. M. Fairclough, J. S. Kim, A. I. Kirkland, J. M. Smith, H. J. Snaith, H. E. Assender, and A. A. Watt, Chem. Mater. 26, 4004 (2014).
http://dx.doi.org/10.1021/cm501595u
4.
4. J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, Nat. Mater. 10, 765771 (2011).
http://dx.doi.org/10.1038/nmat3118
5.
5. B. A. Timp and X.-Y. Zhu, Surf. Sci. 604, 1335 (2010).
http://dx.doi.org/10.1016/j.susc.2010.04.026
6.
6. C.-H. M. Chuang, P. R. Brown, V. Bulović, and M. G. Bawendi, Nat. Mater. 13, 796 (2014).
http://dx.doi.org/10.1038/nmat3984
7.
7. S. J. Hardman, D. M. Graham, S. K. Stubbs, B. F. Spencer, E. A. Seddon, H.-T. Fung, S. Gardonio, F. Sirotti, M. G. Silly, J. Akhtar, P. O'Brien, D. J. Binks, and W. R. Flavell, Phys. Chem. Chem. Phys. 13, 20275 (2011).
http://dx.doi.org/10.1039/c1cp22330e
8.
8. A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, ACS Nano 4, 3374 (2010).
http://dx.doi.org/10.1021/nn100335g
9.
9.See http://www.nrel.gov/ncpv/images/efficiency_chart.jpg for “Highest confirmed conversion efficiencies for research cells,” National Renewable Energy Laboratory, Golden, CO (accessed February 01, 2016).
10.
10. A. J. Labelle, S. M. Thon, S. Masala, M. M. Adachi, H. Dong, M. Farahani, A. H. Ip, A. Fratalocchi, and E. H. Sargent, Nano Lett. 15, 1101 (2015).
http://dx.doi.org/10.1021/nl504086v
11.
11. S. M. Willis, C. Cheng, H. E. Assender, and A. A. R. Watt, Nano Lett. 12, 1522 (2012).
http://dx.doi.org/10.1021/nl204323j
12.
12. P. R. Brown, R. R. Lunt, N. Zhao, T. P. Osedach, D. D. Wanger, L.-Y. Chang, M. G. Bawendi, and V. Bulović, Nano Lett. 11, 2955 (2011).
http://dx.doi.org/10.1021/nl201472u
13.
13. L.-Y. Chang, R. R. Lunt, P. R. Brown, V. Bulović, and M. G. Bawendi, Nano Lett. 13, 994 (2013).
http://dx.doi.org/10.1021/nl3041417
14.
14. L. Kronik and Y. Shapira, Surf. Sci. Rep. 37, 1 (1999).
http://dx.doi.org/10.1016/S0167-5729(99)00002-3
15.
15. B. F. Spencer, M. J. Cliffe, D. M. Graham, S. J. Hardman, E. A. Seddon, K. L. Syres, A. G. Thomas, F. Sirotti, M. G. Silly, J. Akhtar, P. O'Brien, S. M. Fairclough, J. M. Smith, S. Chattopadhyay, and W. R. Flavell, Surf. Sci. 641, 320 (2015).
http://dx.doi.org/10.1016/j.susc.2015.03.010
16.
16. C. F. Klingshirn, A. Waag, A. Hoffmann, and J. Geurts, Zinc Oxide: From Fundamental Properties Towards Novel Applications ( Springer-Verlag, Berlin, Heidelberg, Germany, 2010).
17.
17. B. F. Spencer, D. M. Graham, S. J. O. Hardman, E. A. Seddon, M. J. Cliffe, K. L. Syres, A. G. Thomas, S. K. Stubbs, F. Sirotti, M. G. Silly, P. F. Kirkham, A. R. Kumarasinghe, G. J. Hirst, A. J. Moss, S. F. Hill, D. A. Shaw, S. Chattopadhyay, and W. R. Flavell, Phys. Rev. B 88, 195301 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.195301
18.
18. B. F. Spencer, M. J. Cliffe, D. M. Graham, S. J. O. Hardman, E. A. Seddon, K. L. Syres, A. G. Thomas, F. Sirotti, M. G. Silly, J. Akhtar, P. O'Brien, S. M. Fairclough, J. M. Smith, S. Chattopadhyay, and W. R. Flavell, Faraday Discuss. 171, 275 (2014).
http://dx.doi.org/10.1039/C4FD00019F
19.
19.See supplementary material at http://dx.doi.org/10.1063/1.4943077 for details of the materials characterization.[Supplementary Material]
20.
20. D. C. Grinter, T. Woolcot, C.-L. Pang, and G. Thornton, J. Phys. Chem. Lett. 5, 4265 (2014).
http://dx.doi.org/10.1021/jz502249j
21.
21. R. Hesse, P. Streubel, and R. Szargan, Surf. Interface Anal. 39, 381 (2007).
http://dx.doi.org/10.1002/sia.2527
22.
22. J. P. Long and V. M. Bermudez, Phys. Rev. B 66, 121308 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.121308
23.
23. S. Lany and A. Zunger, Phys. Rev. B 72, 035215 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.035215
24.
24. R. G. Palmer, D. L. Stein, E. Abrahams, and P. W. Anderson, Phys. Rev. Lett. 53, 958 (1984).
http://dx.doi.org/10.1103/PhysRevLett.53.958
25.
25. J. Z. Li, J. Y. Lin, H. X. Jiang, A. Salvador, A. Botchkarev, and H. Morkoc, Appl. Phys. Lett. 69, 1474 (1996).
http://dx.doi.org/10.1063/1.116912
26.
26. A. Dissanayake, M. Elahi, H. X. Jiang, and J. Y. Lin, Phys. Rev. B 45, 13996 (1992).
http://dx.doi.org/10.1103/PhysRevB.45.13996
27.
27. E. R. Viana, J. C. González, G. M. Ribeiro, and A. G. de Oliveira, J. Phys. Chem. C 117, 7844 (2013).
http://dx.doi.org/10.1021/jp312191c
28.
28. L. H. Chu, Y. F. Chen, D. C. Chang, and C. Y. Chang, J. Phys.: Condens. Matter 7, 4525 (1995).
http://dx.doi.org/10.1088/0953-8984/7/23/021
29.
29. P. A. Cox, The Electronic Structure and Chemistry of Solids ( Oxford University Press, New York, USA, 1987).
30.
30. W. Göpel, Surf. Sci. 62, 165 (1977).
http://dx.doi.org/10.1016/0039-6028(77)90435-6
31.
31. H. Yoshikawa and S. Adachi, Jpn. J. Appl. Phys., Part 1 36, 6237 (1997).
http://dx.doi.org/10.1143/JJAP.36.6237
32.
32. D. D. W. Grinolds, P. R. Brown, D. K. Harris, V. Bulovic, and M. G. Bawendi, Nano Lett. 15, 21 (2015).
http://dx.doi.org/10.1021/nl5024244
http://aip.metastore.ingenta.com/content/aip/journal/apl/108/9/10.1063/1.4943077
Loading
/content/aip/journal/apl/108/9/10.1063/1.4943077
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/108/9/10.1063/1.4943077
2016-03-01
2016-09-30

Abstract

Time-resolved laser-pump X-ray-photoemission-probe spectroscopy of a ZnO () substrate with and without PbSquantum dots(QDs) chemically linked to the surface is performed, using laser photonenergies resonant with and below the band gapenergy of the substrate ( = 372 and 640 nm,  = 3.33 and 1.94 eV). Charge injection from the photoexcitedQDs to ZnO is demonstrated through the change in the surface photovoltage of the ZnO substrate observed when the heterojunction is illuminated with 1.94 eV radiation. The measured carrier dynamics are limited by the persistent photoconductivity of ZnO, giving dark carrier lifetimes of the order of 200 s in a depletion layer at the interface. The chemical specificity of soft X-rays is used to separately measure the charge dynamics in the quantum dots and the substrate, yielding evidence that the depletion region at the interface extends into the PbSQD layer.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/108/9/1.4943077.html;jsessionid=-BxwG4J6eaZmx9zhILdcfFPJ.x-aip-live-03?itemId=/content/aip/journal/apl/108/9/10.1063/1.4943077&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/108/9/10.1063/1.4943077&pageURL=http://scitation.aip.org/content/aip/journal/apl/108/9/10.1063/1.4943077'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,