Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. P. D. C. King and T. D. Veal, J. Phys.: Condens. Matter 23, 334214 (2011).
2. M. C. Beard, J. M. Luther, and A. J. Nozik, Nat. Nanotechnol. 9, 951 (2014).
3. D. C. Neo, C. Cheng, S. D. Stranks, S. M. Fairclough, J. S. Kim, A. I. Kirkland, J. M. Smith, H. J. Snaith, H. E. Assender, and A. A. Watt, Chem. Mater. 26, 4004 (2014).
4. J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K. W. Chou, A. Fischer, A. Amassian, J. B. Asbury, and E. H. Sargent, Nat. Mater. 10, 765771 (2011).
5. B. A. Timp and X.-Y. Zhu, Surf. Sci. 604, 1335 (2010).
6. C.-H. M. Chuang, P. R. Brown, V. Bulović, and M. G. Bawendi, Nat. Mater. 13, 796 (2014).
7. S. J. Hardman, D. M. Graham, S. K. Stubbs, B. F. Spencer, E. A. Seddon, H.-T. Fung, S. Gardonio, F. Sirotti, M. G. Silly, J. Akhtar, P. O'Brien, D. J. Binks, and W. R. Flavell, Phys. Chem. Chem. Phys. 13, 20275 (2011).
8. A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M. K. Nazeeruddin, M. Grätzel, and E. H. Sargent, ACS Nano 4, 3374 (2010).
9.See for “Highest confirmed conversion efficiencies for research cells,” National Renewable Energy Laboratory, Golden, CO (accessed February 01, 2016).
10. A. J. Labelle, S. M. Thon, S. Masala, M. M. Adachi, H. Dong, M. Farahani, A. H. Ip, A. Fratalocchi, and E. H. Sargent, Nano Lett. 15, 1101 (2015).
11. S. M. Willis, C. Cheng, H. E. Assender, and A. A. R. Watt, Nano Lett. 12, 1522 (2012).
12. P. R. Brown, R. R. Lunt, N. Zhao, T. P. Osedach, D. D. Wanger, L.-Y. Chang, M. G. Bawendi, and V. Bulović, Nano Lett. 11, 2955 (2011).
13. L.-Y. Chang, R. R. Lunt, P. R. Brown, V. Bulović, and M. G. Bawendi, Nano Lett. 13, 994 (2013).
14. L. Kronik and Y. Shapira, Surf. Sci. Rep. 37, 1 (1999).
15. B. F. Spencer, M. J. Cliffe, D. M. Graham, S. J. Hardman, E. A. Seddon, K. L. Syres, A. G. Thomas, F. Sirotti, M. G. Silly, J. Akhtar, P. O'Brien, S. M. Fairclough, J. M. Smith, S. Chattopadhyay, and W. R. Flavell, Surf. Sci. 641, 320 (2015).
16. C. F. Klingshirn, A. Waag, A. Hoffmann, and J. Geurts, Zinc Oxide: From Fundamental Properties Towards Novel Applications ( Springer-Verlag, Berlin, Heidelberg, Germany, 2010).
17. B. F. Spencer, D. M. Graham, S. J. O. Hardman, E. A. Seddon, M. J. Cliffe, K. L. Syres, A. G. Thomas, S. K. Stubbs, F. Sirotti, M. G. Silly, P. F. Kirkham, A. R. Kumarasinghe, G. J. Hirst, A. J. Moss, S. F. Hill, D. A. Shaw, S. Chattopadhyay, and W. R. Flavell, Phys. Rev. B 88, 195301 (2013).
18. B. F. Spencer, M. J. Cliffe, D. M. Graham, S. J. O. Hardman, E. A. Seddon, K. L. Syres, A. G. Thomas, F. Sirotti, M. G. Silly, J. Akhtar, P. O'Brien, S. M. Fairclough, J. M. Smith, S. Chattopadhyay, and W. R. Flavell, Faraday Discuss. 171, 275 (2014).
19.See supplementary material at for details of the materials characterization.[Supplementary Material]
20. D. C. Grinter, T. Woolcot, C.-L. Pang, and G. Thornton, J. Phys. Chem. Lett. 5, 4265 (2014).
21. R. Hesse, P. Streubel, and R. Szargan, Surf. Interface Anal. 39, 381 (2007).
22. J. P. Long and V. M. Bermudez, Phys. Rev. B 66, 121308 (2002).
23. S. Lany and A. Zunger, Phys. Rev. B 72, 035215 (2005).
24. R. G. Palmer, D. L. Stein, E. Abrahams, and P. W. Anderson, Phys. Rev. Lett. 53, 958 (1984).
25. J. Z. Li, J. Y. Lin, H. X. Jiang, A. Salvador, A. Botchkarev, and H. Morkoc, Appl. Phys. Lett. 69, 1474 (1996).
26. A. Dissanayake, M. Elahi, H. X. Jiang, and J. Y. Lin, Phys. Rev. B 45, 13996 (1992).
27. E. R. Viana, J. C. González, G. M. Ribeiro, and A. G. de Oliveira, J. Phys. Chem. C 117, 7844 (2013).
28. L. H. Chu, Y. F. Chen, D. C. Chang, and C. Y. Chang, J. Phys.: Condens. Matter 7, 4525 (1995).
29. P. A. Cox, The Electronic Structure and Chemistry of Solids ( Oxford University Press, New York, USA, 1987).
30. W. Göpel, Surf. Sci. 62, 165 (1977).
31. H. Yoshikawa and S. Adachi, Jpn. J. Appl. Phys., Part 1 36, 6237 (1997).
32. D. D. W. Grinolds, P. R. Brown, D. K. Harris, V. Bulovic, and M. G. Bawendi, Nano Lett. 15, 21 (2015).

Data & Media loading...


Article metrics loading...



Time-resolved laser-pump X-ray-photoemission-probe spectroscopy of a ZnO () substrate with and without PbSquantum dots(QDs) chemically linked to the surface is performed, using laser photonenergies resonant with and below the band gapenergy of the substrate ( = 372 and 640 nm,  = 3.33 and 1.94 eV). Charge injection from the photoexcitedQDs to ZnO is demonstrated through the change in the surface photovoltage of the ZnO substrate observed when the heterojunction is illuminated with 1.94 eV radiation. The measured carrier dynamics are limited by the persistent photoconductivity of ZnO, giving dark carrier lifetimes of the order of 200 s in a depletion layer at the interface. The chemical specificity of soft X-rays is used to separately measure the charge dynamics in the quantum dots and the substrate, yielding evidence that the depletion region at the interface extends into the PbSQD layer.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd