Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/109/1/10.1063/1.4955457
1.
L. Reimer and H. Kohl, Transmission Electron Microscopy, 5th ed. ( Springer, New York, 2008), p. 38.
2.
A. H. Zewail and M. Thomas, 4D Transmission Electron Microscopy ( Inperial College Press, London, 2009), p. 167.
3.
K. Kimoto, Microscopy 63, 337344 (2014).
http://dx.doi.org/10.1093/jmicro/dfu027
4.
O. L. Krivanek, T. C. Lovejoy, N. Dellby, T. Aoki, R. W. Carpenter, P. Rz, E. Soignard, J. Zhu, P. E. Batson, M. J. Lagos, R. F. Egerton, and P. A. Crozier, Nature 514, 209212 (2014).
http://dx.doi.org/10.1038/nature13870
5.
M. Kuwahara, S. Kusunoki, Y. Nambo, K. Saitoh, X. G. Jin, T. Ujihara, H. Asano, Y. Takeda, and N. Tanaka, Appl. Phys. Lett. 105, 193101 (2014).
http://dx.doi.org/10.1063/1.4901745
6.
M. P. Silverman, Phys. Lett. A 120, 442 (1987).
http://dx.doi.org/10.1016/0375-9601(87)90106-X
7.
R. M. van der Veen, O.-H. Kwon, A. Tissot, A. Hauser, and A. H. Zewail, Nat. Chem. 5, 395402 (2013).
http://dx.doi.org/10.1038/nchem.1622
8.
L. Piazza, D. J. Masiel, T. LaGrange, B. W. Reed, B. Barwick, and F. Carbone, Chem. Phys. 423, 7984 (2013).
http://dx.doi.org/10.1016/j.chemphys.2013.06.026
9.
A. Feist, E. Echternkamp, J. Schauss, S. V. Yalunin, S. Schafar, and C. Roper, Nature 521, 200203 (2015).
http://dx.doi.org/10.1038/nature14463
10.
R. J. D. Miller, Science 343, 11081116 (2014).
http://dx.doi.org/10.1126/science.1248488
11.
S. Tokita, M. Hirokane, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, Phys. Rev. Lett. 105, 215004 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.215004
12.
Y. Murooka, N. Naruse, S. Sakakihara, M. Ishimaru, J. Yang, and K. Tanimura, Appl. Phys. Lett. 98, 251903 (2011).
http://dx.doi.org/10.1063/1.3602314
13.
J. E. Evans and N. D. Browning, Microscopy 62, 147156 (2013).
http://dx.doi.org/10.1093/jmicro/dfs081
14.
L. Nikolova, M. J. Stem, J. M. MacLeod, B. W. Reed, H. Ibrahim, G. H. Campbell, F. Rosei, T. LaGrange, and B. J. Siwick, J. Appl. Phys. 116, 093512 (2014).
http://dx.doi.org/10.1063/1.4894397
15.
B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, J. Appl. Phys. 92, 1643 (2002).
http://dx.doi.org/10.1063/1.1487437
16.
M. R. Armstrong, K. Boyden, N. D. Browning, G. H. Campbell, J. D. Colvin, W. J. DeHope, A. M. Frank, D. J. Gibson, F. Hartemann, J. S. Kim, W. E. King, T. B. LaGrange, B. J. Pyke, B. W. Reed, R. M. Shuttlesworth, B. C. Stuart, and B. R. Torralva, Ultramicroscopy 107, 356 (2007).
http://dx.doi.org/10.1016/j.ultramic.2006.09.005
17.
T. van Oudheusden, E. F. de Jong, S. B. van der Geer, W. P. E. M. Op't Root, O. J. Luiten, and B. J. Siwick, J. Appl. Phys. 102, 093501 (2007).
http://dx.doi.org/10.1063/1.2801027
18.
H. Boersch, Z. Phys. 139, 115 (1954).
http://dx.doi.org/10.1007/BF01375256
19.
X. G. Jin, N. Yamamoto, Y. Nakagawa, A. Mano, T. Kato, M. Tanioku, T. Ujihara, Y. Takeda, S. Okumi, M. Yamamoto, T. Nakanishi, T. Saka, H. Horinaka, T. Kato, T. Yasue, and T. Koshikawa, Appl. Phys. Express 1, 045002 (2008).
http://dx.doi.org/10.1143/APEX.1.045002
20.
M. Kuwahara, S. Kusunoki, X. G. Jin, T. Nakanishi, Y. Takeda, K. Saitoh, T. Ujihara, H. Asano, and N. Tanaka, Appl. Phys. Lett. 101, 033102 (2012).
http://dx.doi.org/10.1063/1.4737177
21.
Y. Nambo, M. Kuwahara, S. Kusunoki, K. Sameshima, K. Saitoh, T. Ujihara, H. Asano, Y. Takeda, and N. Tanaka, AMTC Lett. 4, 256 (2014), available at http://amtc5.com/imges/file/vol4/amtc_4_123.pdf.
22.
Y. Honda, S. Matsuba, X. G. Jin, T. Miyajima, M. Yamamoto, T. Uchiyama, M. Kuwahara, and Y. Takeda, Jpn. J. Appl. Phys. 52, 086401 (2013).
http://dx.doi.org/10.7567/JJAP.52.086401
23.
K. Aulenbacher, J. Schuler, D. V. Harrach, E. Reichert, J. Röthgen, A. Subashev, V. Tioukine, and Y. Yashin, J. Appl. Phys. 92, 75367543 (2002).
http://dx.doi.org/10.1063/1.1521526
24.
P. W. Hawkes and H. Kasper, Principles of Electron Optics ( Academic Press, London, 1989), Vol. 2, Chap. 48.
25.
H. Kiesel, A. Renz, and F. Hasselbach, Nature 418, 392 (2002).
http://dx.doi.org/10.1038/nature00911
26.
T. Kodama, N. Osakabe, J. Endo, A. Tonomura, K. Ohbayashi, T. Urakami, S. Ohsuka, H. Tsuchiya, Y. Tsuchiya, and Y. Uchikawa, Phys. Rev. A 57, 2781 (1998).
http://dx.doi.org/10.1103/PhysRevA.57.2781
27.
R. F. Egerton, Ultramicroscopy 145, 85 (2014).
http://dx.doi.org/10.1016/j.ultramic.2013.10.019
http://aip.metastore.ingenta.com/content/aip/journal/apl/109/1/10.1063/1.4955457
Loading
/content/aip/journal/apl/109/1/10.1063/1.4955457
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/109/1/10.1063/1.4955457
2016-07-07
2016-12-03

Abstract

The space charge effect has been clearly observed in the energy distributions of picosecond pulse beams from a spin-polarized electron microscope, and was found to depend upon the quantity of charge per pulse. The non-linear phenomena associated with this effect have also been replicated in beam simulations that take into account of a three-dimensional space charge. The results show that a charge of 500 aC/pulse provides the highest brightness with a 16-ps pulse duration, a 30-keV beam energy, and an emission spot of 1.8 m. Furthermore, the degeneracy of the wave packet of the pulsed electron beam has been evaluated to be 1.6 × 10−5 with a charge of 100 aC/pulse, which is higher than that for a continuously emitted electron beam despite the low beam energy of 30 keV. The high degeneracy and high brightness contribute to the realization of high temporal and energy resolutions in low-voltage electron microscopy, which will serve to reduce radiolysis damage and enhance scattering contrast.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/109/1/1.4955457.html;jsessionid=ej13XAWYwPI1MEN9ccKtfyYv.x-aip-live-03?itemId=/content/aip/journal/apl/109/1/10.1063/1.4955457&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/109/1/10.1063/1.4955457&pageURL=http://scitation.aip.org/content/aip/journal/apl/109/1/10.1063/1.4955457'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,