Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/109/10/10.1063/1.4961692
1.
S. K. Baek, J. H. Shin, S. W. Cho, and H. K. Cho, J. Vac. Sci. Technol. B 33, 02B104 (2015).
http://dx.doi.org/10.1116/1.4903038
2.
Q. Zhang, K. Zhang, D. Xu, G. Yang, and H. Huang, Prog. Mater. Sci. 60, 208 (2014).
http://dx.doi.org/10.1016/j.pmatsci.2013.09.003
3.
Y. Zhang, S. Wang, X. Li, L. Chen, Y. Qian, and Z. Zhang, J. Cryst. Growth 291, 196 (2006).
http://dx.doi.org/10.1016/j.jcrysgro.2006.02.044
4.
M. Patel, H. Kim, and J. Kim, Adv. Electron. Mater. 1, 1500232 (2015).
http://dx.doi.org/10.1002/aelm.201500232
5.
C. R. Gobbiner, A. V. M. Ali, and D. J. Kekuda, J Mater Sci: Mater Electron 26, 9801 (2015).
http://dx.doi.org/10.1007/s10854-015-3652-5
6.
G. Papadimitropoulos, N. Vourdas, V. E. Vamvakas, and D. Davazoglou, Thin Solid Films 515, 2428 (2006).
http://dx.doi.org/10.1016/j.tsf.2006.06.002
7.
H. Shokri Kojori, J.-H. Yun, Y. Paik, J. Kim, W. Anderson, and S. J. Kim, Nano Lett. 16, 250 (2016).
http://dx.doi.org/10.1021/acs.nanolett.5b03625
8.
J. Kim, J.-H. Yun, C. H. Kim, Y. C. Park, J. Y. Woo, J. Park, J.-H. Lee, J. Yi, and C.-S. Han, Nanotechnology 21, 115205 (2010).
http://dx.doi.org/10.1088/0957-4484/21/11/115205
9.
A. Sohn, T. Kanki, H. Tanaka, and D. W. Kim, Appl. Phys. Lett. 107, 171603 (2015).
http://dx.doi.org/10.1063/1.4934943
10.
D. S. Murali, S. Kumar, R. J. Choudhary, A. D. Wadikar, M. K. Jain, D. S. Murali, S. Kumar, and R. J. Choudhary, AIP Adv. 5, 047143 (2015).
http://dx.doi.org/10.1063/1.4919323
11.
S. Nandy, A. Banerjee, E. Fortunato, and R. Martins, Rev. Adv. Sci. Eng. 2, 273 (2013).
http://dx.doi.org/10.1166/rase.2013.1045
12.
B. K. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering, P. J. Klar, T. Sander, C. Reindl, J. Benz, M. Eickhoff, C. Heiliger, M. Heinemann, J. Blasing, A. Krost, S. Shokovets, C. Muller, and C. Ronning, Phys. Status Solidi 249, 1487 (2012).
http://dx.doi.org/10.1002/pssb.201248128
13.
S. S. Wilson, Y. Tolstova, D. O. Scanlon, G. W. Watson, and H. A. Atwater, Energy Environ. Sci. 7, 3606 (2014).
http://dx.doi.org/10.1039/C4EE01956C
14.
T. Ijima, Y. Toyoguchi, J. Nishimura, and H. Ogawa, J. Power Sources 5, 99 (1980).
http://dx.doi.org/10.1016/0378-7753(80)80099-1
15.
V. D. Patake, S. S. Joshi, C. D. Lokhande, and O. Joo, Mater. Chem. Phys. 114, 6 (2009).
http://dx.doi.org/10.1016/j.matchemphys.2008.09.031
16.
L. Peng, L. Hu, and X. Fang, Adv. Funct. Mater. 24, 2591 (2014).
http://dx.doi.org/10.1002/adfm.201303367
17.
H. Chen, H. Liu, Z. Zhang, K. Hu, and X. Fang, Adv. Mater. 28, 403 (2016).
http://dx.doi.org/10.1002/adma.201503534
18.
M. Parhizkar, S. Singh, P. K. Nayak, N. Kumar, K. P. Muthe, S. K. Gupta, R. S. Srinivasa, S. S. Talwar, and S. S. Major, Colloids Surf., A 258, 277 (2005).
http://dx.doi.org/10.1016/j.colsurfa.2004.10.029
19.
S. Szu and C. Cheng, Mater. Res. Bull. 43, 2687 (2008).
http://dx.doi.org/10.1016/j.materresbull.2007.10.028
20.
N. A. M. Shanid and M. A. Khadar, Thin Solid Films 516, 6245 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.11.119
21.
Y. Wang, J. Ghanbaja, F. Soldera, S. Migot, P. Boulet, D. Horwat, F. Mücklich, and J. F. Pierson, Appl. Surf. Sci. 335, 85 (2015).
http://dx.doi.org/10.1016/j.apsusc.2015.02.028
22.
Z. Zheng, B. Huang, Z. Wang, M. Guo, X. Qin, X. Zhang, P. Wang, and Y. Dai, J. Phys. Chem. C 113, 14448 (2009).
http://dx.doi.org/10.1021/jp904198d
23.
Y. S. Lee, D. Chua, R. E. Brandt, S. C. Siah, J. V. Li, J. P. Mailoa, S. W. Lee, R. G. Gordon, and T. Buonassisi, Adv. Mater. 26, 4704 (2014).
http://dx.doi.org/10.1002/adma.201401054
24.
S. Ko, J. Lee, H. S. Yang, S. Park, and U. Jeong, Adv. Mater. 24, 4451 (2012).
http://dx.doi.org/10.1002/adma.201201821
25.
L. Martin, H. Martinez, D. Poinet, B. Pecquenard, and F. Le Cras, J. Phys. Chem. C 117, 4421 (2013).
http://dx.doi.org/10.1021/jp3119633
26.
Y. Zhang, W. Zhang, M. Li, Z. Yang, G. Chen, and Q. Wang, J. Mater. Chem. A 1, 14368 (2013).
http://dx.doi.org/10.1039/c3ta13018e
27.
H. T. Hsueh, S. J. Chang, S. Member, W. Y. Weng, C. L. Hsu, T. J. Hsueh, F. Y. Hung, S. L. Wu, and B. T. Dai, IEEE Trans. Nanotechnol. 11, 127 (2012).
http://dx.doi.org/10.1109/TNANO.2011.2159620
28.
K. Kardarian, D. Nunes, P. Maria, A. Ginsburg, D. A. Keller, J. Vaz, J. Deuermeier, A. Y. Anderson, A. Zaban, R. Martins, and E. Fortunato, Sol. Energy Mater. Sol. Cells 147, 27 (2016).
http://dx.doi.org/10.1016/j.solmat.2015.11.041
29.
J. P. Wolfe and J. I. Jang, New J. Phys. 16, 123048 (2014).
http://dx.doi.org/10.1088/1367-2630/16/12/123048
30.
M. Patel, A. Chavda, I. Mukhopadhyay, J. Kim, and A. Ray, Nanoscale 8, 2293 (2016).
http://dx.doi.org/10.1039/C5NR06731F
31.
W. Y. Yang and S. W. Rhee, Appl. Phys. Lett. 91, 232907 (2007).
http://dx.doi.org/10.1063/1.2822403
32.
L. C. Bourne, P. Y. Yu, A. Zettl, and M. L. Cohen, Phys. Rev. B 40, 10973 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.10973
33.
M. Gwon, A. Sohn, Y. Cho, S. Phark, J. Ko, Y. S. Kim, and D. Kim, Sci. Rep. 5, 16727 (2015).
http://dx.doi.org/10.1038/srep16727
34.
V. Gopal, S. K. Singh, and R. M. Mehra, Infrared Phys. Technol. 43, 317 (2002).
http://dx.doi.org/10.1016/S1350-4495(02)00159-7
35.
R. S. Saxena, R. K. Bhan, L. Sareen, R. Pal, R. K. Sharma, and R. Muralidharan, Infrared Phys. Technol. 54, 108 (2011).
http://dx.doi.org/10.1016/j.infrared.2011.01.004
36.
R. Peng, S. Jiao, H. Li, and L. Zhao, J. Alloys Compd. 632, 575 (2015).
http://dx.doi.org/10.1016/j.jallcom.2015.01.137
37.
P. Yadav, B. Tripathi, K. Pandey, and M. Kumar, Sol. Energy Mater. Sol. Cells 133, 105 (2015).
http://dx.doi.org/10.1016/j.solmat.2014.10.031
38.
O. Breitenstein, J. Bauer, A. Lotnyk, and J. Wagner, Superlattices Microstruct. 45, 182 (2009).
http://dx.doi.org/10.1016/j.spmi.2008.10.025
39.
P. Yadav, B. Tripathi, K. Pandey, and M. Kumar, Phys. Chem. Chem. Phys. 16, 15469 (2014).
http://dx.doi.org/10.1039/C4CP01115E
40.
S. Chatterjee, S. K. Saha, and A. J. Pal, Sol. Energy Mater. Sol. Cells 147, 17 (2016).
http://dx.doi.org/10.1016/j.solmat.2015.11.045
41.
T. Zhai, L. Li, X. Wang, X. Fang, Y. Bando, and D. Golberg, Adv. Funct. Mater. 20, 4233 (2010).
http://dx.doi.org/10.1002/adfm.201001259
42.
A. G. Marin, C. G. Nunez, E. Ruiz, J. Piqueras, and J. L. Pau, Appl. Phys. Lett. 102, 232105 (2013).
http://dx.doi.org/10.1063/1.4811128
43.
J. Lv, J. Xu, M. Zhao, P. Yan, S. Mao, F. Shang, G. He, M. Zhang, and Z. Sun, Ceram. Int. 41, 13983 (2015).
http://dx.doi.org/10.1016/j.ceramint.2015.07.010
44.
J.-K. Wu, W.-J. Chen, Y. H. Chang, Y. F. Chen, D.-R. Hang, C.-T. Liang, and J.-Y. Lu, Nanoscale Res. Lett. 8, 387 (2013).
http://dx.doi.org/10.1186/1556-276X-8-387
http://aip.metastore.ingenta.com/content/aip/journal/apl/109/10/10.1063/1.4961692
Loading
/content/aip/journal/apl/109/10/10.1063/1.4961692
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/109/10/10.1063/1.4961692
2016-09-06
2016-10-01

Abstract

Zero-bias operating Cu oxide-based photodetector was achieved by using large-scale available sputtering method. Cu oxide (Cu O or CuO) was used as p-type transparent layer to form a heterojunction by contacting n-type ZnO layer. All metal-oxide materials were employed to realize transparent device at room temperature and showed a high transparency (>75% at 600 nm) with excellent photoresponses. The structural, morphological, optical, and electrical properties of Cu oxides of CuO and Cu O are evaluated in depth by UV-visible spectrometer, X-ray diffraction, scanning electron microscopy, atomic force microscopy, Kelvin probe force microscopy, and Hall measurements. We may suggest a route of high-functional Cu oxide-based photoelectric devices for the applications in flexible and transparent electronics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/109/10/1.4961692.html;jsessionid=8SihWBdeVAgr8wFU2QGJNXZi.x-aip-live-06?itemId=/content/aip/journal/apl/109/10/10.1063/1.4961692&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/109/10/10.1063/1.4961692&pageURL=http://scitation.aip.org/content/aip/journal/apl/109/10/10.1063/1.4961692'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,