Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/109/10/10.1063/1.4961981
1.
S. Lacroix, R. J. Black, C. Veilleux, and J. Lapierre, Appl. Opt. 25, 2468 (1986).
http://dx.doi.org/10.1364/AO.25.002468
2.
G. G. Liu, K. W. Li, P. Hao, W. C. Zhou, Y. H. Wu, and M. Xuan, Sens. Actuator, A 201, 352 (2013).
http://dx.doi.org/10.1016/j.sna.2013.07.041
3.
K. S. Chiang, Y. Q. Liu, M. N. Ng, and X. Y. Dong, Electron. Lett. 36, 966 (2000).
http://dx.doi.org/10.1049/el:20000701
4.
W. Liang, Y. Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, Appl. Phys. Lett. 86, 151122 (2005).
http://dx.doi.org/10.1063/1.1904716
5.
H. Tazawa, T. Kanie, and M. Katayama, Appl. Phys. Lett. 91, 113901 (2007).
http://dx.doi.org/10.1063/1.2783278
6.
K. T. Kim, K. J. Cho, K. Im, S. J. Baik, C. H. Lee, and J. Lee, IEEE Sens. J. 11, 1568 (2011).
http://dx.doi.org/10.1109/JSEN.2010.2086054
7.
L. Bo, P. F. Wang, Y. Semenova, and G. Farrell, IEEE Photonics Technol. Lett. 25, 228 (2013).
http://dx.doi.org/10.1109/LPT.2012.2234449
8.
H. M. Wei, Y. N. Zhu, and S. Krishnaswamy, IEEE Photonics Technol. Lett. 28, 103 (2016).
http://dx.doi.org/10.1109/LPT.2015.2487350
9.
K. J. Lee, X. Liu, N. Vuillemin, R. Lwin, S. G. Leon-Saval, A. Argyros, and B. T. Kuhlmey, Opt. Express 22, 17497 (2014).
http://dx.doi.org/10.1364/OE.22.017497
10.
R. Jha, J. Villatoro, and G. Badenes, Appl. Phys. Lett. 93, 191106 (2008).
http://dx.doi.org/10.1063/1.3025576
11.
R. Jha, J. Villatoro, G. Badenes, and V. Pruneri, Opt. Lett. 34, 617 (2009).
http://dx.doi.org/10.1364/OL.34.000617
12.
P. Bhatia and B. D. Gupta, Appl. Opt. 50, 2032 (2011).
http://dx.doi.org/10.1364/AO.50.002032
13.
D. Monzon-Hernandez, J. Villatoro, D. Talavera, and D. Luna-Moreno, Appl. Opt. 43, 1216 (2004).
http://dx.doi.org/10.1364/AO.43.001216
14.
K. Mitsui, Y. Handa, and K. Kajikawa, Appl. Phys. Lett. 85, 4231 (2004).
http://dx.doi.org/10.1063/1.1812583
15.
G. G. Liu, Y. H. Wu, K. W. Li, P. Hao, P. Zhang, and M. Xuan, IEEE Photonics Technol. Lett. 24, 658 (2012).
http://dx.doi.org/10.1109/LPT.2012.2185786
16.
Z. F. Yu and S. H. Fan, Opt. Express 19(11), 10029 (2011).
http://dx.doi.org/10.1364/OE.19.010029
17.
L. Bo, C. C. O'Mahony, Y. Semenova, N. Gilmartin, P. Wang, and G. Farrell, Opt. Express 22, 8150 (2014).
http://dx.doi.org/10.1364/OE.22.008150
18.
S. Wang, Y. Liao, H. Yang, X. Wang, and J. Wang, Appl. Opt. 54, 10283 (2015).
http://dx.doi.org/10.1364/AO.54.010283
19.
L. F. Luo, S. L. Pu, J. L. Tang, X. L. Zeng, and M. Lahoubi, Appl. Phys. Lett. 106, 193507 (2015).
http://dx.doi.org/10.1063/1.4921267
20.
S. C. Yan, Y. Chen, C. Li, F. Xu, and Y. Q. Lu, Opt. Express 23, 9407 (2015).
http://dx.doi.org/10.1364/OE.23.009407
21.
J. L. Zhang, Z. M. Mao, and Z. Q. Lin, Appl. Opt. 28, 2026 (1989).
http://dx.doi.org/10.1364/AO.28.002026
22.
A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications ( Oxford University Press, Inc., 1997).
23.
S. W. Yang, T. L. Wu, C. W. Wu, and H. C. Chang, J. Lightwave Technol. 16, 691 (1998).
http://dx.doi.org/10.1109/50.664084
24.
Y. Jung, G. Brambilla, and D. J. Richardson, Opt. Express 17, 5273 (2009).
http://dx.doi.org/10.1364/OE.17.005273
25.
J. Li, L. P. Sun, S. Gao, Z. Quan, Y. L. Chang, Y. Ran, L. Jin, and B. O. Guan, Opt. Lett. 36, 3593 (2011).
http://dx.doi.org/10.1364/OL.36.003593
26.
K. F. Palmer and D. Williams, J. Opt. Soc. Am. 64, 1107 (1974).
http://dx.doi.org/10.1364/JOSA.64.001107
http://aip.metastore.ingenta.com/content/aip/journal/apl/109/10/10.1063/1.4961981
Loading
/content/aip/journal/apl/109/10/10.1063/1.4961981
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/109/10/10.1063/1.4961981
2016-09-06
2016-09-30

Abstract

We propose and study an optical microfiber coupler (OMC) sensor working near the turning point of effective group index difference between the even supermode and odd supermode to achieve high refractive index (RI) sensitivity. Theoretical calculations reveal that infinite sensitivity can be obtained when the measured RI is close to the turning point value. This diameter-dependent turning point corresponds to the condition that the effective group index difference equals zero. To validate our proposed sensing mechanism, we experimentally demonstrate an ultrahigh sensitivity of 39541.7 nm/RIU at a low ambient RI of 1.3334 based on an OMC with the diameter of 1.4 m. An even higher sensitivity can be achieved by carrying out the measurements at RI closer to the turning point. The resulting ultrasensitive RI sensing platform offers a substantial impact on a variety of applications from high performance trace analyte detection to small molecule sensing.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/109/10/1.4961981.html;jsessionid=xASXqnjDOMNbAuwTbkyT6rOC.x-aip-live-02?itemId=/content/aip/journal/apl/109/10/10.1063/1.4961981&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/109/10/10.1063/1.4961981&pageURL=http://scitation.aip.org/content/aip/journal/apl/109/10/10.1063/1.4961981'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,