Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/109/10/10.1063/1.4962271
1.
A. M. White, “ Infrared detectors,” U.S. patent 4,679,063 (July 7, 1987).
2.
S. Maimon and G. W. Wicks, Appl. Phys. Lett. 89(15), 151109 (2006).
http://dx.doi.org/10.1063/1.2360235
3.
P. Klipstein, Proc. SPIE 6940, 69402U-2 (2008).
http://dx.doi.org/10.1117/12.778848
4.
A. Rogalski, Infrared Detectors, CRC Press, 2 edition (November 15, 2010).
5.
J. B. Rodriguez, E. Plis, G. Bishop, Y. D. Sharma, H. Kim, L. R. Dawson, and S. Krishna, Appl. Phys. Lett. 91(4), 043514 (2007).
http://dx.doi.org/10.1063/1.2760153
6.
P. Klipstein, O. Klin, S. Grossman, N. Snapi, I. Lukomsky, D. Aronov, M. Yassen, A. Glozman, T. Fishman, E. Berkowicz, O. Magen, I. Shtrichman, and E. Weiss, Opt. Eng. 50(6), 061002 (2011).
http://dx.doi.org/10.1117/1.3572149
7.
H. S. Kim, O. O. Cellek, Z.-Y. Lin, Z.-Y. He, X.-H. Zhao, S. Liu, H. Li, and Y. H. Zhang, Appl. Phys. Lett. 101(16), 161114 (2012).
http://dx.doi.org/10.1063/1.4760260
8.
E. Weiss, O. Klin, S. Grossmann, N. Snapi, I. Lukomsky, D. Aronov, M. Yassen, E. Berkowicz, A. Glozman, P. Klipstein, A. Fraenkel, and I. Shtrichman, J. Cryst. Growth 339(1), 31 (2012).
http://dx.doi.org/10.1016/j.jcrysgro.2011.11.076
9.
D. Wang, D. Donetsky, G. Kipshidze, Y. Lin, L. Shterengas, G. Belenky, W. Sarney, and S. Svensson, Appl. Phys. Lett. 103(5), 051120 (2013).
http://dx.doi.org/10.1063/1.4817823
10.
D. Z. Ting, C. J. Hill, A. Soibel, S. V. Bandara, and S. D. Gunapala, “ High operating temperature barrier infrared detector with tailorable cutoff wavelength,” U.S. patent 8,928,036B2 (25 September 2009).
11.
A. Haddadi, G. Chen, R. Chevallier, A. M. Hoang, and M. Razeghi, Appl. Phys. Lett. 105, 121104 (2014).
http://dx.doi.org/10.1063/1.4896271
12.
E. H. Steenbergen, B. C. Connelly, G. D. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J. M. Fastenau, A. W. K. Liu, S. Elhamri, O. O. Cellek, and Y.-H. Zhang, Appl. Phys. Lett. 99, 251110 (2011).
http://dx.doi.org/10.1063/1.3671398
13.
B. V. Olson, E. A. Shaner, J. K. Kim, J. F. Klem, S. D. Hawkins, L. M. Murray, J. P. Prineas, M. E. Flatte, and T. F. Boggess, Appl. Phys. Lett. 101, 092109 (2012).
http://dx.doi.org/10.1063/1.4749842
14.
L. Höglund, D. Z. Ting, A. Khoshakhlagh, A. Soibel, C. J. Hill, A. Fisher, S. Keo, and S. D. Gunapala, Appl. Phys. Lett. 103, 221908 (2013).
http://dx.doi.org/10.1063/1.4835055
15.
Z.-Y. Lin, S. Liu, E. H. Steenbergen, and Y.-H. Zhang, Appl. Phys. Lett. 107, 201107 (2015).
http://dx.doi.org/10.1063/1.4936109
16.
C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, D. Z. Ting, and S. D. Gunapala, Electron. Lett. 46(18), 12861288 (2010).
http://dx.doi.org/10.1049/el.2010.1844
17.
D. Z. Ting, A. Soibel, and S. D. Gunapala, Appl. Phys. Lett. 108, 183504 (2016).
http://dx.doi.org/10.1063/1.4948387
18.
D. Donetsky, S. P. Svensson, L. E. Vorobjev, and G. Belenky, Appl. Phys. Lett. 95, 212104 (2009).
http://dx.doi.org/10.1063/1.3267103
19.
J. S. Blakemore, Semiconductor Statistics ( Dover, New York, 1987).
20.
L. Hogland, D. Z-Y. Ting, A. Soibel, C. J. Hill, A. M. Fisher, S. A. Keo, and S. D. Gunapala, IEEE Photonics Technol. Lett. 27(23), 24922495 (2015).
http://dx.doi.org/10.1109/LPT.2015.2472396
21.
A. Soibel, C. J. Hill, S. A. Keo, L. Hoglund, R. Rosenberg, R. Kowalczyk, A. Khoshaklagh, A. Fisher, D. Z.-Y. Ting, and S. Gunapala, Appl. Phys. Lett. 105, 023512 (2014).
http://dx.doi.org/10.1063/1.4890465
22.
D. Z. Ting, A. Soibel, L. Hoglund, C. J. Hill, S. A. Keo, A. Fisher, and S. Gunapala, J. Electron. Mater. 45, 4680 (2016).
http://dx.doi.org/10.1007/s11664-016-4633-z
http://aip.metastore.ingenta.com/content/aip/journal/apl/109/10/10.1063/1.4962271
Loading
/content/aip/journal/apl/109/10/10.1063/1.4962271
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/109/10/10.1063/1.4962271
2016-09-09
2016-09-30

Abstract

We extended the cut-off wavelength of bulk InAsSb nBn detectors to  = 4.6 m at  = 200 K by incorporating series of single InSb monolayer into InAsSb absorber. Detectors with 2 m thick absorber showed a temperature independent quantum efficiency ≈ 0.45 for back-side illumination without antireflection coating. The dark current density was  = 5 × 10−6 A/cm2 at  = 150 K, and increased to  = 2 × 10−3 A/cm2 at  = 200 K. At temperatures of  = 150 K and below, the demonstrated photodetectors operate in the background limited performance mode, with detectivity *() = 3–6 × 1011 cm Hz0.5/W for the background temperature of 300 K, and /2 field of view.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/109/10/1.4962271.html;jsessionid=WxMdk73qq_F-P64mitM1wrUv.x-aip-live-03?itemId=/content/aip/journal/apl/109/10/10.1063/1.4962271&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/109/10/10.1063/1.4962271&pageURL=http://scitation.aip.org/content/aip/journal/apl/109/10/10.1063/1.4962271'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,