Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/109/10/10.1063/1.4962331
1.
J. Du, Z. Du, J.-S. Hu, Z. Pan, Q. Shen, J. Sun, D. Long, H. Dong, L. Sun, X. Zhong, and L.-J. Wan, “ Zn–Cu–In–Se quantum dot solar cells with a certified power conversion efficiency of 11.6%,” J. Am. Chem. Soc. 138(12), 42014209 (2016).
http://dx.doi.org/10.1021/jacs.6b00615
2.
H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. H. Jingbi You, Y. Liu, and Y. Yang, “ Interface engineering of highly efficient perovskite solar cells,” Science 345, 542 (2014).
http://dx.doi.org/10.1126/science.1254050
3.
Q. Dai, E. M. Sabio, W. Wang, and J. Tang, “ Pulsed laser deposition of Mn doped CdSe quantum dots for improved solar cell performance,” Appl. Phys. Lett. 104, 183901 (2014).
http://dx.doi.org/10.1063/1.4875107
4.
P. K. Santra and P. V. Kamat, “ Mn-doped quantum dot sensitized solar cells: A strategy to boost efficiency over 5%,” J. Am. Chem. Soc. 134, 2508 (2012).
http://dx.doi.org/10.1021/ja211224s
5.
S. Horoz, Q. Dai, F. S. Maloney, B. Yakami, J. M. Pikal, X. Zhang, J. Wang, W. Wang, and J. Tang, “ Absorption induced by Mn doping of ZnS for improved sensitized quantum-dot solar cells,” Phys. Rev. Appl. 3, 024011 (2015).
http://dx.doi.org/10.1103/PhysRevApplied.3.024011
6.
J. B. Sambur, T. Novet, and B. A. Parkinson, “ Multiple exciton collection in a sensitized photovoltaic system,” Science 330, 63 (2010).
http://dx.doi.org/10.1126/science.1191462
7.
F. W. Wise, “ Lead salt quantum dots: The limit of strong quantum confinement,” Acc. Chem. Res. 33, 773 (2000).
http://dx.doi.org/10.1021/ar970220q
8.
G.-H. Kim, F. P. G. de Arquer, Y. J. Yoon, X. Lan, M. Liu, O. Voznyy, Z. Yang, F. Fan, A. H. Ip, P. Kanjanaboos, S. Hoogland, J. Y. Kim, and E. H. Sargent, “ High-efficiency colloidal quantum dot photovoltaics via robust self-assembled monolayers,” Nano Lett. 15(11), 76917696 (2015).
http://dx.doi.org/10.1021/acs.nanolett.5b03677
9.
A. Pimachev and Y. Dahnovsky, “ Optical and magnetic properties of PbS nanocrystals doped by manganese impurities,” J. Phys. Chem. C 119, 16941 (2015).
http://dx.doi.org/10.1021/acs.jpcc.5b03704
10.
R. Beaulac, P. I. Archer, X. Liu, S. Lee, G. M. Salley, M. Dobrowolska, J. K. Furdyna, and D. R. Gamelin, “ Spin-polarizable excitonic luminescence in colloidal Mn2+-doped CdSe quantum dots,” Nano Lett. 8, 1197 (2008).
http://dx.doi.org/10.1021/nl080195p
11.
V. Proshchenko and Y. Dahnovsky, “ Optical spectra of CdMnSe of nano-ferro- and antiferro-magnets,” Phys. Chem. Chem. Phys. 17, 26828 (2015).
http://dx.doi.org/10.1039/C5CP02457A
12.
Q. Dai, J. Chen, L. Lu, J. Tang, and W. Wang, “ Pulsed laser deposition of CdSe quantum dots on Zn2SnO4 nanowires and their photovoltaic applications,” Nano Lett. 12, 4187 (2012).
http://dx.doi.org/10.1021/nl301761w
13.
Q. Dai, J. Chen, L. Lu, J. Tang, and W. Wang, “ PbS quantum dots prepared by pulsed laser deposition for photovoltaic applications and ligand effects on device performance,” Appl. Phys. Lett. 102, 203904 (2013).
http://dx.doi.org/10.1063/1.4807935
14.
R. S. Silva, P. C. Morais, F. Qu, A. M. Alcalde, N. O. Dantas, and H. S. L. Sullasi, “ Synthesis process controlled magnetic properties of Pb1-xMnxS nanocrystals,” Appl. Phys. Lett. 90, 253114 (2007).
http://dx.doi.org/10.1063/1.2746076
15.
F. Moro, L. Turyanska, J. Wilman, A. J. Fielding, M. W. Fay, J. Granwehr, and A. Patanè, “ Electron spin coherence near room temperature in magnetic quantum dots,” Sci. Rep. 5, 10855 (2015).
http://dx.doi.org/10.1038/srep10855
16.
L. Turyanska, F. Moro, A. N. Knott, M. W. Fay, T. D. Bradshaw, and A. Patan, “ Paramagnetic, near-infrared fluorescent Mn-doped PbS colloidal nanocrystals,” Part. Part. Syst. Charact. 30, 945 (2013).
http://dx.doi.org/10.1002/ppsc.201300184
17.
H. W. de Wijn and R. F. van Balderen, “ Electron spin resonance of manganese in borate glasses,” J. Chem. Phys. 46, 1381 (1967).
http://dx.doi.org/10.1063/1.1840861
18.
L. Turyanska, R. J. A. Hill, O. Makarovsky, F. Moro, A. N. Knott, O. J. Larkin, A. Patane, A. Meaney, P. C. M. Christianen, M. W. Fay, and R. J. Curry, “ Tuneable paramagnetic susceptibility and exciton g-factor in Mn-doped PbS colloidal nanocrystals,” Nanoscale 6, 8919 (2014).
http://dx.doi.org/10.1039/C4NR02336F
19.
A. Shabaev, Al. L. Efros, and A. J. Nozik, “ Multiexciton generation by a single photon in nanocrystals,” Nano Lett. 6, 2856 (2006).
http://dx.doi.org/10.1021/nl062059v
20.
H. Haug and A.-P. Jauho, “ Quantum kinetics in transport and optics of semiconductors,” in Solid-State Sciences ( Springer, Berlin, Heidelberg, 2008), Vol. 123.
21.
J. Chen, L. Lu, and W. Wang, “ Zn2sno4 nanowires as photoanode for dye-sensitized solar cells and the improvement on open circuit voltage,” J. Phys. Chem. C 116, 10841 (2012).
http://dx.doi.org/10.1021/jp301770n
22.
A. Braga, S. Gimenez, I. Concina, A. Vomiero, and I. Mora-Sero, “ Panchromatic sensitized solar cells based on metal sulfide quantum dots grown directly on nanostructured TiO2 electrodes,” J. Phys. Chem. Lett. 2, 454 (2011).
http://dx.doi.org/10.1021/jz2000112
23.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09 Revision E.01 ( Gaussian Inc., Wallingford, CT, 2009).
24.
ADF2014, SCM, Theoretical Chemistry ( Vrije Universiteit, Amsterdam, The Netherlands, 2014).
25.
G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, and T. Ziegler, “ Chemistry with ADF,” J. Comput. Chem. 22, 931 (2001).
http://dx.doi.org/10.1002/jcc.1056
26.
C. Fonseca Guerra, G. J. Snijders, G. te Velde, and J. E. Baerends, “ Towards an order-n DFT method,” Theor. Chem. Acc. 99, 391 (1998).
http://dx.doi.org/10.1007/s002140050353
http://aip.metastore.ingenta.com/content/aip/journal/apl/109/10/10.1063/1.4962331
Loading
/content/aip/journal/apl/109/10/10.1063/1.4962331
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/109/10/10.1063/1.4962331
2016-09-06
2016-09-25

Abstract

A huge enhancement in the incident photon-to-current efficiency of PbS quantum dot (QD) sensitized solar cells by manganese doping is observed. In the presence of Mn dopants with relatively small concentration (4 at. %), the photoelectric current increases by an average of 300% (up to 700%). This effect cannot be explained by the light absorption mechanism because both the experimental and theoretical absorption spectra demonstrate several times decreases in the absorption coefficient. To explain such dramatic increase in the photocurrent we propose the electron tunneling mechanism from the LUMO of the QD excited state to the ZnSnO (ZTO) semiconductor photoanode. This change is due to the presence of the Mn instead of Pb atom at the QD/ZTO interface. The calculations confirm this mechanism. This work proposes an alternative route for a significant improvement of the efficiency for quantum dot sensitized solar cells.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/109/10/1.4962331.html;jsessionid=wUmK9h8uR7ALlFoV7nueMtVq.x-aip-live-03?itemId=/content/aip/journal/apl/109/10/10.1063/1.4962331&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/109/10/10.1063/1.4962331&pageURL=http://scitation.aip.org/content/aip/journal/apl/109/10/10.1063/1.4962331'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,