Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
J. Du, Z. Du, J.-S. Hu, Z. Pan, Q. Shen, J. Sun, D. Long, H. Dong, L. Sun, X. Zhong, and L.-J. Wan, “ Zn–Cu–In–Se quantum dot solar cells with a certified power conversion efficiency of 11.6%,” J. Am. Chem. Soc. 138(12), 42014209 (2016).
H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. H. Jingbi You, Y. Liu, and Y. Yang, “ Interface engineering of highly efficient perovskite solar cells,” Science 345, 542 (2014).
Q. Dai, E. M. Sabio, W. Wang, and J. Tang, “ Pulsed laser deposition of Mn doped CdSe quantum dots for improved solar cell performance,” Appl. Phys. Lett. 104, 183901 (2014).
P. K. Santra and P. V. Kamat, “ Mn-doped quantum dot sensitized solar cells: A strategy to boost efficiency over 5%,” J. Am. Chem. Soc. 134, 2508 (2012).
S. Horoz, Q. Dai, F. S. Maloney, B. Yakami, J. M. Pikal, X. Zhang, J. Wang, W. Wang, and J. Tang, “ Absorption induced by Mn doping of ZnS for improved sensitized quantum-dot solar cells,” Phys. Rev. Appl. 3, 024011 (2015).
J. B. Sambur, T. Novet, and B. A. Parkinson, “ Multiple exciton collection in a sensitized photovoltaic system,” Science 330, 63 (2010).
F. W. Wise, “ Lead salt quantum dots: The limit of strong quantum confinement,” Acc. Chem. Res. 33, 773 (2000).
G.-H. Kim, F. P. G. de Arquer, Y. J. Yoon, X. Lan, M. Liu, O. Voznyy, Z. Yang, F. Fan, A. H. Ip, P. Kanjanaboos, S. Hoogland, J. Y. Kim, and E. H. Sargent, “ High-efficiency colloidal quantum dot photovoltaics via robust self-assembled monolayers,” Nano Lett. 15(11), 76917696 (2015).
A. Pimachev and Y. Dahnovsky, “ Optical and magnetic properties of PbS nanocrystals doped by manganese impurities,” J. Phys. Chem. C 119, 16941 (2015).
R. Beaulac, P. I. Archer, X. Liu, S. Lee, G. M. Salley, M. Dobrowolska, J. K. Furdyna, and D. R. Gamelin, “ Spin-polarizable excitonic luminescence in colloidal Mn2+-doped CdSe quantum dots,” Nano Lett. 8, 1197 (2008).
V. Proshchenko and Y. Dahnovsky, “ Optical spectra of CdMnSe of nano-ferro- and antiferro-magnets,” Phys. Chem. Chem. Phys. 17, 26828 (2015).
Q. Dai, J. Chen, L. Lu, J. Tang, and W. Wang, “ Pulsed laser deposition of CdSe quantum dots on Zn2SnO4 nanowires and their photovoltaic applications,” Nano Lett. 12, 4187 (2012).
Q. Dai, J. Chen, L. Lu, J. Tang, and W. Wang, “ PbS quantum dots prepared by pulsed laser deposition for photovoltaic applications and ligand effects on device performance,” Appl. Phys. Lett. 102, 203904 (2013).
R. S. Silva, P. C. Morais, F. Qu, A. M. Alcalde, N. O. Dantas, and H. S. L. Sullasi, “ Synthesis process controlled magnetic properties of Pb1-xMnxS nanocrystals,” Appl. Phys. Lett. 90, 253114 (2007).
F. Moro, L. Turyanska, J. Wilman, A. J. Fielding, M. W. Fay, J. Granwehr, and A. Patanè, “ Electron spin coherence near room temperature in magnetic quantum dots,” Sci. Rep. 5, 10855 (2015).
L. Turyanska, F. Moro, A. N. Knott, M. W. Fay, T. D. Bradshaw, and A. Patan, “ Paramagnetic, near-infrared fluorescent Mn-doped PbS colloidal nanocrystals,” Part. Part. Syst. Charact. 30, 945 (2013).
H. W. de Wijn and R. F. van Balderen, “ Electron spin resonance of manganese in borate glasses,” J. Chem. Phys. 46, 1381 (1967).
L. Turyanska, R. J. A. Hill, O. Makarovsky, F. Moro, A. N. Knott, O. J. Larkin, A. Patane, A. Meaney, P. C. M. Christianen, M. W. Fay, and R. J. Curry, “ Tuneable paramagnetic susceptibility and exciton g-factor in Mn-doped PbS colloidal nanocrystals,” Nanoscale 6, 8919 (2014).
A. Shabaev, Al. L. Efros, and A. J. Nozik, “ Multiexciton generation by a single photon in nanocrystals,” Nano Lett. 6, 2856 (2006).
H. Haug and A.-P. Jauho, “ Quantum kinetics in transport and optics of semiconductors,” in Solid-State Sciences ( Springer, Berlin, Heidelberg, 2008), Vol. 123.
J. Chen, L. Lu, and W. Wang, “ Zn2sno4 nanowires as photoanode for dye-sensitized solar cells and the improvement on open circuit voltage,” J. Phys. Chem. C 116, 10841 (2012).
A. Braga, S. Gimenez, I. Concina, A. Vomiero, and I. Mora-Sero, “ Panchromatic sensitized solar cells based on metal sulfide quantum dots grown directly on nanostructured TiO2 electrodes,” J. Phys. Chem. Lett. 2, 454 (2011).
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09 Revision E.01 ( Gaussian Inc., Wallingford, CT, 2009).
ADF2014, SCM, Theoretical Chemistry ( Vrije Universiteit, Amsterdam, The Netherlands, 2014).
G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders, and T. Ziegler, “ Chemistry with ADF,” J. Comput. Chem. 22, 931 (2001).
C. Fonseca Guerra, G. J. Snijders, G. te Velde, and J. E. Baerends, “ Towards an order-n DFT method,” Theor. Chem. Acc. 99, 391 (1998).

Data & Media loading...


Article metrics loading...



A huge enhancement in the incident photon-to-current efficiency of PbS quantum dot (QD) sensitized solar cells by manganese doping is observed. In the presence of Mn dopants with relatively small concentration (4 at. %), the photoelectric current increases by an average of 300% (up to 700%). This effect cannot be explained by the light absorption mechanism because both the experimental and theoretical absorption spectra demonstrate several times decreases in the absorption coefficient. To explain such dramatic increase in the photocurrent we propose the electron tunneling mechanism from the LUMO of the QD excited state to the ZnSnO (ZTO) semiconductor photoanode. This change is due to the presence of the Mn instead of Pb atom at the QD/ZTO interface. The calculations confirm this mechanism. This work proposes an alternative route for a significant improvement of the efficiency for quantum dot sensitized solar cells.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd