Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/109/10/10.1063/1.4962388
1.
M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).
http://dx.doi.org/10.1103/RevModPhys.70.1039
2.
P. A. Lee and X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.17
3.
S.-Y. Xu, Y. Xia, L. A. Wray, S. Jia, F. Meier, J. H. Dil, J. Osterwalder, B. Slomski, A. Bansil, H. Lin, R. J. Cava, and M. Z. Hasan, Science 332, 560 (2011).
http://dx.doi.org/10.1126/science.1201607
4.
T. Sato, K. Segawa, K. Kosaka, S. Souma, K. Nakayama, K. Eto, T. Minami, Y. Ando, and T. Takahashi, Nat. Phys. 7, 840 (2011).
http://dx.doi.org/10.1038/nphys2058
5.
M. Brahlek, N. Bansal, N. Koirala, S.-Y. Xu, M. Neupane, C. Liu, M. Z. Hasan, and S. Oh, Phys. Rev. Lett. 109, 186403 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.186403
6.
Y. Tokura and Y. Tomioka, J. Magn. Magn. Mater. 200, 1 (1999).
http://dx.doi.org/10.1016/S0304-8853(99)00352-2
7.
M. Jaros, Rep. Prog. Phys. 48, 1091 (1985).
http://dx.doi.org/10.1088/0034-4885/48/8/001
8.
B. Jaffe, W. R. Cook, Jr., and H. Jaffe, Piezoelectric Ceramics ( Academic Press, London/New York, 1971).
9.
J. G. Bednorz and K. A. Muller, Z. Phys. B: Condens. Matter 64, 189 (1986).
http://dx.doi.org/10.1007/BF01303701
10.
G. H. Jonker and J. H. Van Santen, Physica 16, 337 (1950).
http://dx.doi.org/10.1016/0031-8914(50)90033-4
11.
J. Volger, Physica 20, 49 (1954).
http://dx.doi.org/10.1016/S0031-8914(54)80015-2
12.
J. H. Van Santen and G. H. Jonker, Physica 16, 599 (1950).
http://dx.doi.org/10.1016/0031-8914(50)90104-2
13.
A. V. Mahajan, D. C. Johnston, D. R. Torgeson, and F. Borsa, Phys. Rev. B 46, 10973 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.10973
14.
F. Inaba, T. Arima, T. Ishikawa, T. Katsufuji, and Y. Tokura, Phys. Rev. B 52, R2221 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.R2221
15.
Y. Tokura, J. Phys. Chem. Solids 53, 1619 (1992).
http://dx.doi.org/10.1016/0022-3697(92)90152-4
16.
K. Byczuk, W. Hofstetter, and D. Vollhardt, Phys. Rev. Lett. 94, 056404 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.056404
17.
T. Ohnishi, K. Shibuya, T. Yamamoto, and M. Lippmaa, J. Appl. Phys. 103, 103703 (2008).
http://dx.doi.org/10.1063/1.2921972
18.
R. Engel-Herbert, Molecular Beam Epitaxy From Research to Mass Production ( Elsevier Science, 2013), Chap. 17.
19.
B. Jalan, P. Moetakef, and S. Stemmer, Appl. Phys. Lett. 95, 032906 (2009).
http://dx.doi.org/10.1063/1.3184767
20.
Y. Matsubara, K. S. Takahashi, Y. Tokura, and M. Kawasaki, Appl. Phys. Express 7, 125502 (2014).
http://dx.doi.org/10.7567/APEX.7.125502
21.
P. Moetakef, D. G. Ouellette, J. Y. Zhang, T. A. Cain, S. J. Allen, and S. Stemmer, J. Cryst. Growth 355, 166 (2012).
http://dx.doi.org/10.1016/j.jcrysgro.2012.06.052
22.
P. Xu, D. Phelan, J. Seok Jeong, K. Andre Mkhoyan, and B. Jalan, Appl. Phys. Lett. 104, 082109 (2014).
http://dx.doi.org/10.1063/1.4866867
23.
M. Brahlek, L. Zhang, C. Eaton, H.-T. Zhang, and R. Engel-Herbert, Appl. Phys. Lett. 107, 143108 (2015).
http://dx.doi.org/10.1063/1.4932198
24.
H.-T. Zhang, L. R. Dedon, L. W. Martin, and R. Engel-Herbert, Appl. Phys. Lett. 106, 233102 (2015).
http://dx.doi.org/10.1063/1.4922213
25.
A. Prakash, J. Dewey, H. Yun, J. S. Jeong, K. A. Mkhoyan, and B. Jalan, J. Vac. Sci. Technol. A 33, 060608 (2015).
http://dx.doi.org/10.1116/1.4933401
26.
J. Son, P. Moetakef, B. Jalan, O. Bierwagen, N. J. Wright, R. Engel-Herbert, and S. Stemmer, Nat. Mater. 9, 482 (2010).
http://dx.doi.org/10.1038/nmat2750
27.
B. Jalan, S. J. Allen, G. E. Beltz, P. Moetakef, and S. Stemmer, Appl. Phys. Lett. 98, 132102 (2011).
http://dx.doi.org/10.1063/1.3571447
28.
Y. Matsubara, K. S. Takahashi, M. S. Bahramy, Y. Kozuka, D. Maryenko, J. Falson, A. Tsukazaki, Y. Tokura, and M. Kawasaki, Nat. Commun. 7, 11631 (2016).
http://dx.doi.org/10.1038/ncomms11631
29.
J. A. Moyer, C. Eaton, and R. Engel-Herbert, Adv. Mater. 25, 3578 (2013).
http://dx.doi.org/10.1002/adma.201300900
30.
J. Y. Tsao, Materials Fundamentals of Molecular Beam Epitaxy ( Academic Press, Inc., San Diego, 1993).
31.
E. Mikheev, A. P. Kajdos, A. J. Hauser, and S. Stemmer, Appl. Phys. Lett. 101, 252906 (2012).
http://dx.doi.org/10.1063/1.4773034
32.
J. B. Goodenough, Rep. Prog. Phys. 67, 1915 (2004).
http://dx.doi.org/10.1088/0034-4885/67/11/R01
33.
C. Eaton, J. A. Moyer, H. M. Alipour, E. D. Grimley, M. Brahlek, J. M. LeBeau, and R. Engel-Herbert, J. Vac. Sci. Technol. A 33, 061504 (2015).
http://dx.doi.org/10.1116/1.4927439
34.
J. M. LeBeau, R. Engel-Herbert, B. Jalan, J. Cagnon, P. Moetakef, S. Stemmer, and G. B. Stephenson, Appl. Phys. Lett. 95, 142905 (2009).
http://dx.doi.org/10.1063/1.3243696
35.
A. P. Kajdos and S. Stemmer, Appl. Phys. Lett. 105, 191901 (2014).
http://dx.doi.org/10.1063/1.4901726
36.
A. R. Denton and N. W. Ashcroft, Phys. Rev. A 43, 3161 (1991).
http://dx.doi.org/10.1103/PhysRevA.43.3161
37.
I. R. Shein, V. L. Kozhevnikov, and A. L. Ivanovskii, Solid State Sci. 10, 217 (2008).
http://dx.doi.org/10.1016/j.solidstatesciences.2007.09.013
38.
T. Maekawa, K. Kurosaki, and S. Yamanaka, J. Alloys Compd. 426, 46 (2006).
http://dx.doi.org/10.1016/j.jallcom.2006.02.026
39.
A. Parveen and N. K. Gaur, Phys. B: Condens. Matter 407, 500 (2012).
http://dx.doi.org/10.1016/j.physb.2011.11.023
http://aip.metastore.ingenta.com/content/aip/journal/apl/109/10/10.1063/1.4962388
Loading
/content/aip/journal/apl/109/10/10.1063/1.4962388
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/109/10/10.1063/1.4962388
2016-09-07
2016-09-30

Abstract

Requisite to growing stoichiometric perovskite thin films of the solid-solution O by hybrid molecular beam epitaxy is understanding how the growth conditions interpolate between the end members 'O and O, which can be grown in a self-regulated fashion, but under different conditions. Using the example of LaSrVO, the two-dimensional growth parameter space that is spanned by the flux of the metal-organic precursor vanadium oxytriisopropoxide and composition, , was mapped out. The evolution of the adsorption-controlled growth window was obtained using a combination of X-ray diffraction, atomic force microscopy, reflection high-energy electron-diffraction (RHEED), and Rutherford backscattering spectroscopy. It is found that the stoichiometric growth conditions can be mapped out quickly with a single calibration sample using RHEED. Once stoichiometric conditions have been identified, the out-of-plane lattice parameter can be utilized to precisely determine the composition . This strategy enables the identification of growth conditions that allow the deposition of stoichiometric perovskite oxide films with random A-site cation mixing, which is relevant to a large number of perovskite materials with interesting properties, e.g., high-temperature superconductivity and colossal magnetoresistance, that emerge in solid solution O.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/109/10/1.4962388.html;jsessionid=D6NU10Cd0ZO8-HRk5gP4fAVf.x-aip-live-02?itemId=/content/aip/journal/apl/109/10/10.1063/1.4962388&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/109/10/10.1063/1.4962388&pageURL=http://scitation.aip.org/content/aip/journal/apl/109/10/10.1063/1.4962388'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,