Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/109/10/10.1063/1.4962429
1.
J. B. Grotberg and O. E. Jensen, Annu. Rev. Fluid Mech. 36(1), 121147 (2004).
http://dx.doi.org/10.1146/annurev.fluid.36.050802.121918
2.
T. Thorsen, S. J. Maerkl, and S. R. Quake, Science 298(5593), 580584 (2002).
http://dx.doi.org/10.1126/science.1076996
3.
W. Wu, A. DeConinck, and J. A. Lewis, Adv. Mater. 23(24), H178H183 (2011).
http://dx.doi.org/10.1002/adma.201004625
4.
H. A. Stone, A. D. Stroock, and A. Ajdari, Annu. Rev. Fluid Mech. 36, 381411 (2004).
http://dx.doi.org/10.1146/annurev.fluid.36.050802.122124
5.
K. M. van Delft, J. C. T. Eijkel, D. Mijatovic, T. S. Druzhinina, H. Rathgen, N. R. Tas, A. van den Berg, and F. Mugele, Nano Lett. 7(2), 345350 (2007).
http://dx.doi.org/10.1021/nl062447x
6.
N. R. Tas, J. W. Berenschot, P. Mela, H. V. Jansen, M. Elwenspoek, and A. van den Berg, Nano Lett. 2(9), 10311032 (2002).
http://dx.doi.org/10.1021/nl025693r
7.
H. F. Tan, J. T. Kang, and C. G. Wang, Int. J. Mech. Sci. 90, 15 (2015).
http://dx.doi.org/10.1016/j.ijmecsci.2014.10.009
8.
E. J. Lim, T. J. Ober, J. F. Edd, S. P. Desai, D. Neal, K. W. Bong, P. S. Doyle, G. H. McKinley, and M. Toner, Nat. Commun. 5, 4120 (2014).
http://dx.doi.org/10.1038/ncomms5120
9.
J. Atencia and D. J. Beebe, Nature 437(7059), 648655 (2005).
http://dx.doi.org/10.1038/nature04163
10.
H. Mehrabian, P. Gao, and J. J. Feng, Phys. Fluids 23, 122108 (2011).
http://dx.doi.org/10.1063/1.3671739
11.
R. J. Shilton, M. Travagliati, F. Beltram, and M. Cecchini, Appl. Phys. Lett. 105, 074106 (2014).
http://dx.doi.org/10.1063/1.4893975
12.
E. Berthier and D. J. Beebe, Lab Chip 7(11), 14751478 (2007).
http://dx.doi.org/10.1039/b707637a
13.
G. W. Scherer, J. H. Prevost, and Z. Wang, Int. J. Solids Struct. 46(18–19), 34513462 (2009).
http://dx.doi.org/10.1016/j.ijsolstr.2009.05.016
14.
H. S. Kim and A. J. Crosby, Adv. Mater. 23(36), 4188 (2011).
http://dx.doi.org/10.1002/adma.201101477
15.
M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo, and D. T. Burke, Science 282(5388), 484487 (1998).
http://dx.doi.org/10.1126/science.282.5388.484
16.
N. R. Tas, P. Mela, T. Kramer, J. W. Berenschot, and A. van den Berg, Nano Lett. 3(11), 15371540 (2003).
http://dx.doi.org/10.1021/nl034676e
17.
G. M. Whitesides, Lab Chip 11(2), 191193 (2011).
http://dx.doi.org/10.1039/C0LC90101F
18.
K. Pan, Y. Ni, L. He, and R. Huang, Int. J. Solids Struct. 51(21–22), 37153726 (2014).
http://dx.doi.org/10.1016/j.ijsolstr.2014.07.005
19.
H. Mei, C. M. Landis, and R. Huang, Mech. Mater. 43(11), 627642 (2011).
http://dx.doi.org/10.1016/j.mechmat.2011.08.003
20.
Y. Ni and A. K. Soh, Acta Mater. 69, 3746 (2014).
http://dx.doi.org/10.1016/j.actamat.2014.01.041
21.
J. W. Hutchinson and Z. Suo, Adv. Appl. Mech. 29, 63 (1991).
http://dx.doi.org/10.1016/S0065-2156(08)70164-9
22.
M. A. Reyes-Martinez, A. J. Crosby, and A. L. Briseno, Nat. Commun. 6, 6948 (2015).
http://dx.doi.org/10.1038/ncomms7948
23.
A. Lendlein and R. Langer, Science 296(5573), 16731676 (2002).
http://dx.doi.org/10.1126/science.1066102
http://aip.metastore.ingenta.com/content/aip/journal/apl/109/10/10.1063/1.4962429
Loading
/content/aip/journal/apl/109/10/10.1063/1.4962429
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/109/10/10.1063/1.4962429
2016-09-08
2016-09-29

Abstract

The buckling delamination induced microchannel is employed to regulate fluid flow as a microvalve which can be utilized in microfluidic devices. This microvalve consists of a soft substrate and a stiff thin film, between which there is a pre-set small imperfection. Two critical strain values, namely, on-off strain and failure strain, have been proposed to determine the working strain interval using analytical predictions. Within this interval, the cross-sectional area of the microchannel can be controlled and predicted by different compressive strains of the film/substrate system. The fluid flow rate within this microchannel can be then estimated by both analytical and numerical simulations and adjusted to satisfy different values by alternating the compressive strain. In addition, a demonstrative experiment has been taken to verify the feasibility of this approach. This flexible microvalve has potential in the application where the use of traditional rigid microvalves is improper in flexible microfluidic devices. The method and approach of this paper can provide a general guide for flow rate control in microfluidic devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/109/10/1.4962429.html;jsessionid=bse59YAimTJe7eZ1ObOX-RXO.x-aip-live-06?itemId=/content/aip/journal/apl/109/10/10.1063/1.4962429&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/109/10/10.1063/1.4962429&pageURL=http://scitation.aip.org/content/aip/journal/apl/109/10/10.1063/1.4962429'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,