Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/109/10/10.1063/1.4962430
1.
S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, Jpn. J. Appl. Phys., Part 2 35, L74 (1996).
http://dx.doi.org/10.1143/JJAP.35.L74
2.
J. S. Speck and S. F. Chichibu, MRS Bull. 34, 304 (2009).
3.
H. Masui, J. Sonoda, N. Pfaff, I. Koslow, S. Nakamura, and S. P. DenBaars, J. Phys. D: Appl. Phys. 41, 165105 (2008).
http://dx.doi.org/10.1088/0022-3727/41/16/165105
4.
S. P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C.-C. Pan, C.-C. Yen, S. Tanaka, Y. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J. S. Speck, and S. Nakamura, Acta Mater. 61, 945 (2013).
http://dx.doi.org/10.1016/j.actamat.2012.10.042
5.
D. F. Feezell, J. S. Speck, S. P. Denbaars, and S. Nakamura, J. Disp. Technol. 9, 190 (2013).
http://dx.doi.org/10.1109/JDT.2012.2227682
6.
D. F. Feezell, M. C. Schmidt, S. P. Denbaars, and S. Nakamura, MRS Bull. 34, 318 (2009).
http://dx.doi.org/10.1557/mrs2009.93
7.
R. M. Farrell, D. F. Feezell, M. C. Schmidt, D. A. Haeger, K. M. Kelchner, K. Iso, H. Yamada, M. Saito, K. Fujito, D. A. Cohen, J. S. Speck, S. P. DenBaars, and S. Nakamura, Jpn. J. Appl. Phys., Part 2 46, L761 (2007).
http://dx.doi.org/10.1143/JJAP.46.L761
8.
R. M. Farrell, P. S. Hsu, D. A. Haeger, K. Fujito, S. P. DenBaars, J. S. Speck, and S. Nakamura, Appl. Phys. Lett. 96, 231113 (2010).
http://dx.doi.org/10.1063/1.3443719
9.
A. Pourhashemi, R. M. Farrell, M. T. Hardy, P. S. Hsu, K. M. Kelchner, J. S. Speck, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 103, 151112 (2013).
http://dx.doi.org/10.1063/1.4824773
10.
A. Pourhashemi, R. M. Farrell, D. A. Cohen, J. S. Speck, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 106, 111105 (2015).
http://dx.doi.org/10.1063/1.4915324
11.
D. L. Becerra, L. Y. Kuritzky, J. Nedy, A. S. Abbas, A. Pourhashemi, R. M. Farrell, D. A. Cohen, S. P. Denbaars, J. S. Speck, and S. Nakamura, Appl. Phys. Lett. 108, 091106 (2016).
http://dx.doi.org/10.1063/1.4943143
12.
B. P. Yonkee, E. C. Young, C. Lee, J. T. Leonard, P. Steven, J. S. Speck, and S. Nakamura, Opt. Express 24, 7816 (2016).
http://dx.doi.org/10.1364/OE.24.007816
13.
W. G. Scheibenzuber, U. T. Schwarz, R. G. Veprek, B. Witzigmann, and A. Hangleiter, Phys. Rev. B: Condens. Matter Mater. Phys. 80, 115320 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.115320
14.
S.-H. Park and D. Ahn, Proc. SPIE 8625, 862511 (2013).
http://dx.doi.org/10.1117/12.2000155
15.
L. Y. Kuritzky and J. S. Speck, MRS Commun. 5, 463 (2015).
http://dx.doi.org/10.1557/mrc.2015.53
16.
D. C. O'Brien, L. Zeng, H. Le-Minh, G. Faulkner, J. W. Walewski, and S. Randel, in IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. PIMRC (2008), p. 1.
17.
H. Le Minh, D. O'Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, IEEE Photonics Technol. Lett. 21, 1063 (2009).
http://dx.doi.org/10.1109/LPT.2009.2022413
18.
C. Lee, C. Zhang, M. Cantore, R. M. Farrell, S. H. Oh, T. Margalith, J. S. Speck, S. Nakamura, J. E. Bowers, and S. P. DenBaars, Opt. Express 23, 16232 (2015).
http://dx.doi.org/10.1364/OE.23.016232
19.
C. Lee, C. Shen, H. M. Oubei, M. Cantore, B. Janjua, T. K. Ng, R. M. Farrell, M. M. El-Desouki, J. S. Speck, S. Nakamura, B. S. Ooi, and S. P. DenBaars, Opt. Express 23, 29779 (2015).
http://dx.doi.org/10.1364/OE.23.029779
20.
Y. Chi, D. Hsieh, C. Tsai, H. Chen, H. Kuo, and G. Lin, Opt. Express 23, 13051 (2015).
http://dx.doi.org/10.1364/OE.23.013051
21.
H. Chun, S. Rajbhandari, D. Tsonev, G. Faulkner, H. Haas, and D. O'Brien, in Proceedings of the IEEE International Conference on Communication Workshop (2015), p. 1392.
22.
Y. Chi, D. Hsieh, C. Lin, H. Chen, C. Huang, J. He, B. Ooi, S. P. Denbaars, S. Nakamura, H. Kuo, and G. Lin, Sci. Rep. 5, 18690 (2015).
http://dx.doi.org/10.1038/srep18690
23.
B. Janjua, H. M. Oubei, J. R. D. Retamal, T. K. Ng, C.-T. Tsai, H.-Y. Wang, Y.-C. Chi, H.-C. Kuo, G.-R. Lin, J.-H. He, and B. S. Ooi, Opt. Express 23, 18746 (2015).
http://dx.doi.org/10.1364/OE.23.018746
24.
C. Shen, T. K. Ng, J. T. Leonard, A. Pourhashemi, H. M. Oubei, M. S. Alias, S. Nakamura, S. P. Denbaars, J. S. Speck, A. Y. Alyamani, M. M. Eldesouki, and B. S. Ooi, ACS Photonics 3, 262 (2016).
http://dx.doi.org/10.1021/acsphotonics.5b00599
25.
J. C. Carrano, T. Li, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, J. Electron. Mater. 28, 325 (1999).
http://dx.doi.org/10.1007/s11664-999-0035-9
26.
R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. Denbaars, U. K. Mishra, and J. S. Speck, Appl. Phys. Lett. 98, 201107 (2011).
http://dx.doi.org/10.1063/1.3591976
27.
J. R. Lang, N. G. Young, R. M. Farrell, Y. Wu, and J. S. Speck, Appl. Phys. Lett. 101, 181105 (2012).
http://dx.doi.org/10.1063/1.4765068
28.
B. P. Yonkee, R. M. Farrell, J. T. Leonard, S. P. DenBaars, J. S. Speck, and S. Nakamura, Semicond. Sci. Technol. 30, 075007 (2015).
http://dx.doi.org/10.1088/0268-1242/30/7/075007
29.
FIMMWAVE software package, Photon Design, Ltd., http://www.photond.com/products/fimmwave.htm.
30.
L. Y. Kuritzky, D. L. Becerra, A. S. Abbas, J. Nedy, S. Nakamura, S. P. DenBaars, and D. A. Cohen, Semicond. Sci. Technol. 31, 075008 (2016).
http://dx.doi.org/10.1088/0268-1242/31/7/075008
31.
L. A. Coldren, S. W. Corzine, and M. L. Mašanović, Diode Lasers and Photonic Integrated Circuits ( John Wiley & Sons, Inc., Hoboken, NJ, USA, 2012).
32.
J. E. Bowers and C. A. Burrus, Jr., J. Light. Technol. 5, 1339 (1987).
http://dx.doi.org/10.1109/JLT.1987.1075419
33.
H. Wang, M. Kumagai, T. Tawara, T. Nishida, T. Akasaka, N. Kobayashi, and T. Nishida, Appl. Phys. Lett. 81, 4703 (2002).
http://dx.doi.org/10.1063/1.1530749
34.
M. Funato, Y. Seok, K. Yoshiaki, O. Akio, K. Yoichi, K. Takashi, and M. S. Nagahama, Appl. Phys. Express 6, 122704 (2013).
http://dx.doi.org/10.7567/APEX.6.122704
35.
A. Banerjee, T. Frost, E. Stark, and P. Bhattacharya, Appl. Phys. Lett. 101, 041108 (2012).
http://dx.doi.org/10.1063/1.4738499
36.
T. Frost, A. Banerjee, and P. Bhattacharya, Appl. Phys. Lett. 103, 211111 (2013).
http://dx.doi.org/10.1063/1.4832332
37.
T. Frost, S. Jahangir, E. Stark, S. Deshpande, A. Hazari, C. Zhao, B. S. Ooi, and P. Bhattacharya, Nano Lett. 14, 4535 (2014).
http://dx.doi.org/10.1021/nl5015603
38.
T. Melo, Y.-L. Hu, C. Weisbuch, M. C. Schmidt, A. David, B. Ellis, C. Poblenz, Y.-D. Lin, M. R. Krames, and J. W. Raring, Semicond. Sci. Technol. 27, 024015 (2012).
http://dx.doi.org/10.1088/0268-1242/27/2/024015
39.
H. Zhao, R. A. Arif, Y. K. Ee, and N. Tansu, Opt. Quantum Electron. 40, 301 (2008).
http://dx.doi.org/10.1007/s11082-007-9177-2
40.
J. E. Bowers, Solid State Electron. 30, 1 (1987).
http://dx.doi.org/10.1016/0038-1101(87)90023-2
http://aip.metastore.ingenta.com/content/aip/journal/apl/109/10/10.1063/1.4962430
Loading
/content/aip/journal/apl/109/10/10.1063/1.4962430
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/109/10/10.1063/1.4962430
2016-09-08
2016-12-10

Abstract

The dynamic characteristics of III-nitride multi-quantum well laser diodes (LDs) emitting at 410 nm were investigated. LDs were grown on semipolar bulk GaN substrates and fabricated into devices with cavity lengths ranging from 900 nm to 1800 nm. A 3-dB bandwidth of 5 GHz and 5 Gbit/s direct modulation with on-off keying were demonstrated, which were limited by the bandwidth of the photodetector used for the measurements. The differential gain of the LDs was determined to be 2.5 ± 0.5 × 10−16 cm2 by comparing the slope efficiency for different cavity lengths. Analysis of the frequency response showed that the -factor, the gain compression factor, and the intrinsic maximum bandwidth were 0.33 ns, 7.4 × 10−17 cm3, and 27 GHz, respectively.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/109/10/1.4962430.html;jsessionid=iJwSZ4Qtfcgfu2HyGp35PNDc.x-aip-live-03?itemId=/content/aip/journal/apl/109/10/10.1063/1.4962430&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/109/10/10.1063/1.4962430&pageURL=http://scitation.aip.org/content/aip/journal/apl/109/10/10.1063/1.4962430'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,