Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/109/10/10.1063/1.4962434
1.
P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, and G. Le Lay, Phys. Rev. Lett. 108, 155501 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.155501
2.
E. Bianco, S. Butler, S. Jiang, O. D. Restrepo, W. Windl, and J. E. Goldberger, ACS Nano 7, 4414 (2013).
http://dx.doi.org/10.1021/nn4009406
3.
F. F. Zhu, W. J. Chen, Y. Xu, C. L. Gao, D. D. Guan, C. H. Liu, D. Qian, S. C. Zhang, and J. F. Jia, Nat. Mater. 14, 1020 (2015).
http://dx.doi.org/10.1038/nmat4384
4.
V. Ongun Özcelik, O. Üzengi Aktürk, E. Durgun, and S. Ciraci, Phys. Rev. B 92, 125420 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.125420
5.
H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, and P. D. Ye, ACS Nano 8, 4033 (2014).
http://dx.doi.org/10.1021/nn501226z
6.
E. S. Reich, Nature 506, 19 (2014).
http://dx.doi.org/10.1038/506019a
7.
C. Kamal and M. Ezawa, Phys. Rev. B 91, 085423 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.085423
8.
S. L. Zhang, Y. H. Hu, Z. Y. Hu, B. Cai, and H. B. Zeng, Appl. Phys. Lett. 107, 022102 (2015).
http://dx.doi.org/10.1063/1.4926761
9.
G. X. Wang, R. Pandey, and S. P. Karna, ACS Appl. Mater. Interfaces 7, 11490 (2015).
http://dx.doi.org/10.1021/acsami.5b02441
10.
O. Üzengi Aktürk, V. Ongun Özcelik, and S. Ciraci, Phys. Rev. B 91, 235446 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.235446
11.
L. Yang, W. Mi, and X. Wang, RSC Adv. 6, 38746 (2016).
http://dx.doi.org/10.1039/C6RA03927H
12.
O. Cretu, Y. C. Lin, and K. Suenaga, Nano Lett. 14, 1064 (2014).
http://dx.doi.org/10.1021/nl404735w
13.
C. Si, J. Zhou, and Z. Sun, ACS Appl. Mater. Interfaces 7, 17510 (2015).
http://dx.doi.org/10.1021/acsami.5b05401
14.
H. L. Zhuang, A. K. Singh, and R. G. Hennig, Phys. Rev. B 87, 165415 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.165415
15.
V. Ongun Özcelik, S. Cahangirov, and S. Ciraci, Phys. Rev. Lett. 112, 246803 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.246803
16.
W.-B. Zhang, Z.-B. Song, and L.-M. Dou, J. Mater. Chem. C 3, 3087 (2015).
http://dx.doi.org/10.1039/C4TC02758B
17.
S. Shaikhutdinov and H.-J. Freund, J. Phys.: Condens. Matter 27, 443001 (2015).
http://dx.doi.org/10.1088/0953-8984/27/44/443001
18.
G. X. Wang, G. C. Loh, R. Pandey, and S. P. Karna, J. Phys. Chem. C 119, 15654 (2015).
http://dx.doi.org/10.1021/acs.jpcc.5b01646
19.
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat. Nanotechnol. 7, 699 (2012).
http://dx.doi.org/10.1038/nnano.2012.193
20.
Y. Li, Y. L. Li, C. M. Araujo, W. Luo, and R. Ahuja, Catal. Sci. Technol. 3, 2214 (2013).
http://dx.doi.org/10.1039/c3cy00207a
21.
A. Kutana, E. S. Penev, and B. I. Yakobson, Nanoscale 6, 5820 (2014).
http://dx.doi.org/10.1039/C4NR00177J
22.
R. B. Ganesh, L. Zhong, M. Vincent, J. Yeonwoong, C. Judy, D. Saptarshi, X. Di, S. Youngwoo, S. S. Michael, R. C. Valentino et al., ACS Nano 9, 11509 (2015).
http://dx.doi.org/10.1021/acsnano.5b05556
23.
A. Geim and I. Grigorieva, Nature 499, 419 (2013).
http://dx.doi.org/10.1038/nature12385
24.
J. Kang, S. Tongay, J. Zhou, J. B. Li, and J. Q. Wu, Appl. Phys. Lett. 102, 012111 (2013).
http://dx.doi.org/10.1063/1.4774090
25.
J. Liao, B. Sa, J. Zhou, R. Ahuja, and Z. Sun, J. Phys. Chem. C 118, 17594 (2014).
http://dx.doi.org/10.1021/jp5038014
26.
Q. Wu, S. K. Jang, S. Park, S. J. Jung, H. Suh, Y. H. Lee, S. Lee, and Y. J. Song, Nanoscale 7, 7574 (2015).
http://dx.doi.org/10.1039/C5NR00889A
27.
X. R. Zhang, Z. S. Meng, D. W. Rao, Y. H. Wang, Q. Shi, Y. Z. Liu, H. P. Wu, K. M. Deng, H. Y. Liu, and R. F. Lu, Energy Environ. Sci. 9, 841 (2016).
http://dx.doi.org/10.1039/C5EE03490F
28.
V. Ongun Özcelik, J. G. Azadani, C. Yang, S. J. Koester, and T. Low, Phys. Rev. B 94, 035125 (2016).
http://dx.doi.org/10.1103/PhysRevB.94.035125
29.
X. Wang and F. Xia, Nat. Mater. 14, 264 (2015).
http://dx.doi.org/10.1038/nmat4218
30.
W. Hu and J. L. Yang, Comput. Mater. Sci. 112, 518 (2016).
http://dx.doi.org/10.1016/j.commatsci.2015.06.033
31.
Y. Q. Cai, G. Zhang, and Y. W. Zhang, J. Phys. Chem. C 119, 13929 (2015).
http://dx.doi.org/10.1021/acs.jpcc.5b02634
32.
N. Gillgren, D. Wickramaratne, Y. M. Shi, T. Espiritu, J. W. Yang, J. Hu, J. Wei, X. Liu, Z. Q. Mao, K. J. Watanabe et al., 2D Mater. 2, 011001 (2015).
http://dx.doi.org/10.1088/2053-1583/2/1/011001
33.
L. Huang and J. B. Li, Appl. Phys. Lett. 108, 083101 (2016).
http://dx.doi.org/10.1063/1.4942368
34.
Z. W. Huang, Y. Li, and J. Li, Sci. Rep. 5, 16448 (2015).
http://dx.doi.org/10.1038/srep16448
35.
L. Huang, N. Huo, Y. Li, H. Chen, J. Yang, Z. Wei, J. Li, and S. S. Li, J. Phys. Chem. Lett. 6, 2483 (2015).
http://dx.doi.org/10.1021/acs.jpclett.5b00976
36.
Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, ACS Nano 8, 8292 (2014).
http://dx.doi.org/10.1021/nn5027388
37.
J. Padilha, A. Fazzio, and A. J. da Silva, Phys. Rev. Lett. 114, 066803 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.066803
38.
Y. H. Hu, S. L. Zhang, S. F. Sun, M. Q. Xie, B. Cai, and H. B. Zeng, Appl. Phys. Lett. 107, 122107 (2015).
http://dx.doi.org/10.1063/1.4931459
39.
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
40.
J. P. Perdew, K. Burke, and M. Emzerhof, Phys. Rev. Lett. 77, 3865 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
41.
P. E. Blochl, Phys. Rev. B 50, 17953 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17953
42.
G. Kresse and J. Furhmuller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
43.
G. Makov and M. C. Payne, Phys. Rev. B 51, 4014 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.4014
44.
A. D. Becke, Phys. Rev. A 38, 3098 (1988).
http://dx.doi.org/10.1103/PhysRevA.38.3098
45.
W. B. Zhang, C. Chen, and P. Y. Tang, J. Chem. Phys. 141, 044708 (2014).
http://dx.doi.org/10.1063/1.4890728
46.
W. B. Zhang, Q. Qu, P. Zhu, and C. H. Lam, J. Mater. Chem. C 3, 12457 (2015).
http://dx.doi.org/10.1039/C5TC02840J
47.
W. Y. Yu, Z. L. Zhu, C. Y. Niu, C. Li, J. H. Cho, and Y. Jia, Phys. Chem. Chem. Phys. 17, 16351 (2015).
http://dx.doi.org/10.1039/C5CP01732G
48.
G. Graziano, J. Klime, and F. Fernandez-Alonso et al., J. Phys.: Condens. Mater. 24, 424216 (2012).
http://dx.doi.org/10.1088/0953-8984/24/42/424216
49.
A. S. Rodin, A. Carvalho, and A. H. Castro Neto, Phys. Rev. Lett. 112, 176801 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.176801
http://aip.metastore.ingenta.com/content/aip/journal/apl/109/10/10.1063/1.4962434
Loading
/content/aip/journal/apl/109/10/10.1063/1.4962434
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/109/10/10.1063/1.4962434
2016-09-08
2016-09-29

Abstract

Vertical integration of two-dimensional materials has recently emerged as an exciting method for the design of electronic and optoelectronic devices. In this letter, first principles calculations are employed to explore the structural and electronic properties of the GeSe/phosphorene van der Waals (vdW) p-n heterostructure. Our results suggest that this heterostructure has an intrinsic type-II band alignment and indirect band gap. Moreover, we also find that an intriguing indirect-direct and insulator-metal transition can be induced by strain. In addition, spontaneous electron-hole charge separation is expected to occur, implying that the GeSe/phosphorene heterostructure is a good candidate for applications in optoelectronics. These results provide a route for applications of the GeSe/phosphorene vdW heterostructure in future flexible electronics, optoelectronics, and semiconductor devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/109/10/1.4962434.html;jsessionid=ufUcBzn-5enLhW7NPzPyiD4w.x-aip-live-02?itemId=/content/aip/journal/apl/109/10/10.1063/1.4962434&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/109/10/10.1063/1.4962434&pageURL=http://scitation.aip.org/content/aip/journal/apl/109/10/10.1063/1.4962434'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,