Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/109/10/10.1063/1.4962533
1.
A. Toprak and O. Tigli, Appl. Phys. Rev. 1, 031104 (2014).
http://dx.doi.org/10.1063/1.4896166
2.
C. Hartung, R. Han, C. Seielstad, and S. Holbrook, in International Conference on Mobile Systems, Applications and Services (2006), pp. 2841.
3.
J. W. Matiko, N. J. Grabham, S. P. Beeby, and M. J. Tudor, Meas. Sci. Technol. 25, 012002 (2014).
http://dx.doi.org/10.1088/0957-0233/25/1/012002
4.
H. Hartenstein and K. P. Laberteaux, IEEE Commun. Mag. 46, 164171 (2008).
http://dx.doi.org/10.1109/MCOM.2008.4539481
5.
S. Ullah, H. Higgins, B. Braem, B. Latre, C. Blondia, I. Moerman, S. Saleem, Z. Rahman, and K. S. Kwak, J. Med. Syst. 36, 10651094 (2010).
http://dx.doi.org/10.1007/s10916-010-9571-3
6.
S. R. Anton and H. A. Sodano, Smart Mater. Struct. 16, R1R21 (2007).
http://dx.doi.org/10.1088/0964-1726/16/3/R01
7.
N. W. Hagood and A. V. Flotow, J. Sound Vib. 146, 243268 (1991).
http://dx.doi.org/10.1016/0022-460X(91)90762-9
8.
S. Roundy, P. K. Wright, and J. Radaey, Comput. Commun. 26, 11311144 (2003).
http://dx.doi.org/10.1016/S0140-3664(02)00248-7
9.
N. E. duToit, B. L. Wardle, and S. Kim, Integr. Ferroelectr. 71, 121160 (2005).
http://dx.doi.org/10.1080/10584580590964574
10.
F. Lu, H. P. Lee, and S. P. Lim, Smart Mater. Struct. 13, 5763 (2004).
http://dx.doi.org/10.1088/0964-1726/13/1/007
11.
S. N. Chen, G. J. Wang, and M. C. Chien, Mechatronics 16, 379387 (2006).
http://dx.doi.org/10.1016/j.mechatronics.2006.03.003
12.
A. Erturk and D. J. Inman, J. Vib. Acoust. 130, 041002 (2008).
http://dx.doi.org/10.1115/1.2890402
13.
A. Abdelkefi, Z. Yan, and M. Hajj, Smart Mater. Struct. 22, 025016 (2013).
http://dx.doi.org/10.1088/0964-1726/22/2/025016
14.
Z. Yan, A. Abdelkefi, and M. R. Hajj, Smart Mater. Struct. 23, 025026 (2014).
http://dx.doi.org/10.1088/0964-1726/23/2/025026
15.
J. A. C. Dias, C. De Marqui, and A. Erturk, Appl. Phys. Lett. 102, 0441015 (2013).
http://dx.doi.org/10.1063/1.4789433
16.
S. C. Stanton, A. Erturk, B. P. Mann, and D. J. Inman, J. Appl. Phys. 108, 074903 (2010).
http://dx.doi.org/10.1063/1.3486519
17.
J. Xu and J. Tang, Appl. Phys. Lett. 107, 213902 (2015).
http://dx.doi.org/10.1063/1.4936607
18.
Z. Yan and M. Hajj, Smart Mater. Struct. 24, 115012 (2015).
http://dx.doi.org/10.1088/0964-1726/24/11/115012
19.
Z. Yan and M. Hajj, J. Intell. Mater. Syst. Struct. (published online, 2016).
http://dx.doi.org/10.1177/1045389X16649450
20.
A. Erturk and D. J. Inman, Smart Mater. Struct. 18, 025009 (2009).
http://dx.doi.org/10.1088/0964-1726/18/2/025009
21.
R. S. Haxton and A. D. S. Barr, J. Eng. Ind. 94, 119125 (1972).
http://dx.doi.org/10.1115/1.3428100
22.
D. Castagnetti, Smart Mater. Struct. 21, 094009 (2012).
http://dx.doi.org/10.1088/0964-1726/21/9/094009
23.
D. Castagnetti, J. Vib. Acoust. 137, 0110017 (2015).
http://dx.doi.org/10.1115/1.4028309
http://aip.metastore.ingenta.com/content/aip/journal/apl/109/10/10.1063/1.4962533
Loading
/content/aip/journal/apl/109/10/10.1063/1.4962533
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/109/10/10.1063/1.4962533
2016-09-09
2016-09-28

Abstract

Analysis of cantilever-based piezoelectric energy harvesting systems is usually performed using coupled equations that represent the mechanical displacement and the voltage output. These equations are then solved simultaneously. In contrast to this representation, we use analytical solutions of the governing equation to derive an algebraic equation of the power as a function of the beam displacement, electromechanical coefficients, and the load resistance. Such an equation can be more useful in the design of such harvesters. Particularly, the mechanical displacement is computed from a mechanical governing equation with modified natural frequency and damping ratio that account for the electromechanical coupling. The voltage and the harvested power are then obtained by relating them directly to the mechanical displacement. We validate the proposed analysis by comparing its solution including the tip displacement and harvested power with those of numerical simulations of the governing equations. To demonstrate the generality of the proposed approach, we consider the cases of base excitation, galloping, and autoparametric vibration. The model proposed in this study simplifies the electromechanical coupling problem for practical applications of cantilever-beam piezoelectric energy harvesting systems.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/109/10/1.4962533.html;jsessionid=sx71Ppa_WzpdjLo7mnq30qq2.x-aip-live-02?itemId=/content/aip/journal/apl/109/10/10.1063/1.4962533&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/109/10/10.1063/1.4962533&pageURL=http://scitation.aip.org/content/aip/journal/apl/109/10/10.1063/1.4962533'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,