Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/109/10/10.1063/1.4962534
1.
M. Gabay and G. Toulouse, Phys. Rev. Lett. 47, 201 (1981).
http://dx.doi.org/10.1103/PhysRevLett.47.201
2.
M. Wittmann and A. P. Young, J. Stat. Mech.: Theory Exp. 2016, 013301.
http://dx.doi.org/10.1088/1742-5468/2016/01/013301
3.
I. A. Campbell, S. Senoussi, F. Varret, J. Teillet, and A. Hamzić, Phys. Rev. Lett. 50, 1615 (1983).
http://dx.doi.org/10.1103/PhysRevLett.50.1615
4.
R. V. Chamberlin, Phys. Rev. Lett. 83, 5134 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.5134
5.
F. C. Montenegro, S. M. Rezende, and M. D. Coutinho-Filho, J. Appl. Phys. 63, 3755 (1988);
http://dx.doi.org/10.1063/1.340657
F. C. Montenegro, U. A. Leitão, M. D. Coutinho-Filho, and S. M. Rezende, J. Appl. Phys. 67, 5243 (1990).
http://dx.doi.org/10.1063/1.344624
6.
K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 (1986).
http://dx.doi.org/10.1103/RevModPhys.58.801
7.
F. L. A. Machado, B. L. da Silva, S. M. Rezende, and C. S. Martins, J. Appl. Phys. 75, 6563 (1994).
http://dx.doi.org/10.1063/1.356919
8.
F. L. A. Machado, C. S. Martins, and S. M. Rezende, Phys. Rev. B 51, 3926 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.3926
9.
F. L. A. Machado and S. M. Rezende, J. Appl. Phys. 79, 6558 (1996).
http://dx.doi.org/10.1063/1.361945
10.
M. H. Phan and H. X. Peng, Prog. Mater. Sci. 53, 323 (2008).
http://dx.doi.org/10.1016/j.pmatsci.2007.05.003
11.
M. Kurniawan, R. K. Roy, A. K. Panda, D. W. Greve, P. Ohodnicki, and M. E. McHenry, J. Electron. Mater. 43, 4576 (2014).
http://dx.doi.org/10.1007/s11664-014-3469-7
12.
D. Karnaushenko, D. D. Karnaushenko, D. Makarov, S. Baunack, R. Schäfer, and O. G. Schmidt, Adv. Mater. 27, 6582 (2015).
http://dx.doi.org/10.1002/adma.201503127
13.
H. Hiroyoshi and K. Fukamichi, Phys. Lett. A 85, 242 (1981).
http://dx.doi.org/10.1016/0375-9601(81)90027-X
14.
H. Hiroyoshi and K. Fukamichi, J. Appl. Phys. 53, 2226 (1982).
http://dx.doi.org/10.1063/1.330779
15.
D. Kaptas, T. Kemny, L. Kiss, L. Grnsy, J. Balogh, and I. Vincze, J. Non-Cryst. Solids 156, 336 (1993).
http://dx.doi.org/10.1016/0022-3093(93)90192-Z
16.
D. H. Ryan, J. M. D. Coey, E. Batalla, Z. Altounian, and J. O. Ström-Olsen, Phys. Rev. B 35, 8630 (1987).
http://dx.doi.org/10.1103/PhysRevB.35.8630
17.
P. R. T. Ribeiro, F. L. A. Machado, and E. Dan Dahlberg, J. Appl. Phys. 117, 17E124 (2015).
http://dx.doi.org/10.1063/1.4916931
18.
Y. Obi, L. C. Wang, R. Motsay, D. G. Onn, and M. Nose, J. Appl. Phys. 53, 2304 (1982).
http://dx.doi.org/10.1063/1.330844
19.
K. Fukamichi, R. J. Gambino, and T. R. McGuire, J. Appl. Phys. 53, 2310 (1982).
http://dx.doi.org/10.1063/1.330800
20.
D. Dahlberg, K. V. Rao, and K. Fukamichi, J. Appl. Phys. 55, 1942 (1984).
http://dx.doi.org/10.1063/1.333526
21.
P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977).
http://dx.doi.org/10.1103/RevModPhys.49.435
22.
R. B. da Silva, J. H. de Araújo, J. M. Soares, and F. L. A. Machado, J. Appl. Phys. 115, 113906 (2014).
http://dx.doi.org/10.1063/1.4868685
23.
A. T. Ogielski, Phys. Rev. B 32, 7384 (1985).
http://dx.doi.org/10.1103/PhysRevB.32.7384
24.
R. Riera and J. A. Hertz, J. Phys. A: Math. Gen. 24, 2625 (1991).
http://dx.doi.org/10.1088/0305-4470/24/11/028
25.
J. Nogus and K. Rao, J. Magn. Magn. Mater. 135, L11 (1994).
http://dx.doi.org/10.1016/0304-8853(94)0167-8
26.
J. Tholence, Solid State Commun. 35, 113 (1980).
http://dx.doi.org/10.1016/0038-1098(80)90225-2
27.
B. H. Verbeek, G. J. Nieuwenhuys, H. Stocker, and J. A. Mydosh, Phys. Rev. Lett. 40, 586 (1978).
http://dx.doi.org/10.1103/PhysRevLett.40.586
http://aip.metastore.ingenta.com/content/aip/journal/apl/109/10/10.1063/1.4962534
Loading
/content/aip/journal/apl/109/10/10.1063/1.4962534
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/109/10/10.1063/1.4962534
2016-09-09
2016-09-29

Abstract

Giant magnetoimpedance (GMI) in the reentrant spin-glass (SG) phase of ferromagnetic FeZr is reported. The temperature () dependence of the GMI allows the investigation of the spin dynamics in the SG phase in the MHz frequency regime and thus very short relaxation times (∼10−8 s). The GMI shows a broad maximum around 150 K and diminishes with decreasing below the glass temperature of 15 K. The magnetic permeability data obtained from the GMI data show the general features observed in the ac magnetic susceptibility measured at lower frequencies (10 ≤  ≤ 104 Hz), yielding values of (=()) that allow testing the validity of the power-law scaling used for describing the dynamics of SG-phases up to 15 MHz. A log-log plot of (=1/) versus the reduced critical temperature shows two distinct regimes in the time-domain: (1) a critical slowing-down is observed for values > 3 × 10−3 s; and (2) for 7 × 10−8 ≤  ≤ 3 × 10−3 s. In the latter case a fitting to the power-law yields the value 7.4 for the product of the critical exponents , and 1.6 × 10−7 s for the microscopic relaxation time . The product of the exponents is appropriate for an Ising spin glass.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/109/10/1.4962534.html;jsessionid=-HpBbTuG4LSRcv7Cic1M-pv6.x-aip-live-02?itemId=/content/aip/journal/apl/109/10/10.1063/1.4962534&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/109/10/10.1063/1.4962534&pageURL=http://scitation.aip.org/content/aip/journal/apl/109/10/10.1063/1.4962534'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,