Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/109/11/10.1063/1.4962393
1.
H. Ohno, Science 281, 951 (1998).
http://dx.doi.org/10.1126/science.281.5379.951
2.
K. Ando, S. Takahashi, J. Ieda, H. Kurebayashi, T. Trypiniotis, C. H. W. Barnes, S. Maekawa, and E. Saitoh, Nat. Mater. 10, 655 (2011).
http://dx.doi.org/10.1038/nmat3052
3.
E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, Appl. Phys. Lett. 88, 182509 (2006).
http://dx.doi.org/10.1063/1.2199473
4.
J.-C. Rojas-Sánchez, M. Cubukcu, A. Jain, C. Vergnaud, C. Portemont, C. Ducruet, A. Barski, A. Marty, L. Vila, J.-P. Attané, E. Augendre, G. Desfonds, S. Gambarelli, H. Jaffrés, J.-M. George, and M. Jamet, Phys. Rev. B 88, 064403 (2013).
http://dx.doi.org/10.1103/PhysRevB.88.064403
5.
N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees, Nature 448, 571 (2007).
http://dx.doi.org/10.1038/nature06037
6.
K. Biermann, A. Hernández-Mínguez, R. Hey, and P. V. Santos, J. Appl. Phys. 112, 083913 (2012).
http://dx.doi.org/10.1063/1.4759241
7.
R. Xu, A. Husmann, T. F. Rosenbaum, M.-L. Saboungi, J. E. Enderby, and P. B. Littlewood, Nature 390, 57 (1997).
http://dx.doi.org/10.1038/36306
8.
F. Kisslinger, C. Ott, C. Heide, E. Kampert, B. Butz, E. Spiecker, S. Shallcross, and H. B. Weber, Nat. Phys. 11, 650 (2015).
http://dx.doi.org/10.1038/nphys3368
9.
F. Y. Yang, K. Liu, K. Hong, D. H. Reich, P. C. Season, and C. L. Chien, Science 284, 1335 (1999).
http://dx.doi.org/10.1126/science.284.5418.1335
10.
A. Narayanan, M. D. Watson, S. F. Blake, N. Bruyant, L. Drigo, Y. L. Chen, D. Prabhakaran, B. Yan, C. Felser, T. Kong, P. C. Canfield, and A. I. Coldea, Phys. Rev. Lett. 114, 117201 (2015).
http://dx.doi.org/10.1103/PhysRevLett.114.117201
11.
H. G. Johnson, S. P. Bennett, R. Barua, L. H. Lewis, and D. Heiman, Phys. Rev. B 82, 085202 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.085202
12.
S. Balevičius, N. Zurauskienė, V. Stankevič, S. Keršulis, V. Plaušinaitienė, A. Abrutis, S. Zherlitsyn, T. Herrmannsdörfer, J. Wosnitza, and F. Wolf-Fabris, Appl. Phys. Lett. 101, 092407 (2012).
http://dx.doi.org/10.1063/1.4749820
13.
R. Jansen, Nat. Mater. 11, 400 (2012).
http://dx.doi.org/10.1038/nmat3293
14.
K. Ando and E. Saitoh, Nat. Commun. 3, 629 (2012).
http://dx.doi.org/10.1038/ncomms1640
15.
S. P. Dash, S. Sharma, R. S. Patel, M. P. de Jong, and R. Jansen, Nature 462, 491 (2009).
http://dx.doi.org/10.1038/nature08570
16.
M. Shiraishi, Y. Honda, E. Saitoh, Y. Suzuki, and T. Shinjo, Phys. Rev. B 83, 241204(R) (2011).
http://dx.doi.org/10.1103/PhysRevB.83.241204
17.
M. Bolduc, C. Awo-Affouda, A. Stollenwerk, M. B. Huang, F. G. Ramos, G. Agnello, and V. P. LaBella, Phys. Rev. B 71, 033302 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.033302
18.
W. Zhang, L. Guo, G. Peng, T. Li, S. Feng, Z. Zhou, T. Peng, and Z. Quan, Thin Sold Films 520, 769 (2011).
http://dx.doi.org/10.1016/j.tsf.2011.01.350
19.
M. P. Delmo, S. Yamamoto, S. Kasai, T. Ono, and K. Kobayashi, Nature 457, 1112 (2009).
http://dx.doi.org/10.1038/nature07711
20.
C. Ciccarelli, B. G. Park, S. Ogawa, A. J. Ferguson, and J. Wunderlich, Appl. Phys. Lett. 97, 082106 (2010).
http://dx.doi.org/10.1063/1.3475771
21.
T. Yokota, N. Fujimura, T. Wada, S. Hamasaki, and T. Ito, J. Appl. Phys. 93(10) 7679 (2003).
http://dx.doi.org/10.1063/1.1556116
22.
T. Terao, K. Fujii, D. Shindo, T. Yoshimura, and N. Fujimura, Jpn. J. Appl. Phys., Part 1 48, 033003 (2009).
http://dx.doi.org/10.1143/JJAP.48.033003
23.
Y. Miyata, Y. Nose, T. Yoshimura, A. Ashida, and N. Fujimura, J. Cryst. Growth 425, 158 (2015).
http://dx.doi.org/10.1016/j.jcrysgro.2015.03.013
24.
N. Nakashima and K. Hashimoto, J. Appl. Phys. 69(3), 1440 (1991).
http://dx.doi.org/10.1063/1.347285
25.
V. N. Men'shov, V. V. Tugushev, and S. Caprara, Eur. Phys. J. B 77, 337 (2010).
http://dx.doi.org/10.1140/epjb/e2010-00271-6
26.
T. Roth, P. Rosenits, S. Diez, S. W. Glunz, D. Macdnald, S. Beljakowa, and G. Pensl, J. Appl. Phys. 102, 103716 (2007).
http://dx.doi.org/10.1063/1.2812698
27.
V. V. Emtsev, Jr., C. A. J. Ammerlaan, B. A. Andreev, G. A. Oganesyan, D. S. Poloskin, and N. A. Sobolev, Physica B 308–310, 350 (2001).
http://dx.doi.org/10.1016/S0921-4526(01)00697-4
28.
M. Csontos, T. Wojtowicz, X. Liu, M. Dobrowolska, B. Jankó, J. K. Furdyna, and G. Mihály, Phys. Rev. Lett. 95, 227203 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.227203
29.
N. A. Porter and C. H. Marrows, Sci. Rep. 2, 565 (2012).
http://dx.doi.org/10.1038/srep00565
30.
P. H. Hai, S. Ohya, M. Tanaka, S. E. Barnes, and S. Maekawa, Nature 458, 489 (2009).
http://dx.doi.org/10.1038/nature07879
31.
K. H. Gao, Q. W. Tang, T. Lin, Z. Q. Li, X. H. Zhang, J. Xu, H. Y. Deng, and J. H. Chu, Europhys. Lett. 102, 37009 (2013).
http://dx.doi.org/10.1209/0295-5075/102/37009
32.
A. El Kaaouachi, A. Moudden, and G. Biskupski, Physica B 266, 378 (1999).
http://dx.doi.org/10.1016/S0921-4526(98)01217-4
33.
J. J. H. M. Schoonus, P. P. J. Haazen, H. J. M. Swagten, and B. Koopmans, J. Phys. D: Appl. Phys. 42, 185011 (2009).
http://dx.doi.org/10.1088/0022-3727/42/18/185011
34.
D. Yang, F. Wang, Y. Ren, Y. Zuo, Y. Peng, S. Zhou, and D. Xue, Adv. Funct. Mater. 23, 2918 (2013).
http://dx.doi.org/10.1002/adfm.201202695
35.
C. Petrovic, J. W. Kim, S. L. Bud'ko, A. I. Goldman, P. C. Canfield, W. Choe, and G. J. Miller, Phys. Rev. B 67, 155205 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.155205
36.
T. Zhang, J. J. Harris, W. R. Branford, Y. V. Bugoslavsky, A. Husmann, and S. A. Solin, Appl. Phys. Lett. 88, 012110 (2006).
http://dx.doi.org/10.1063/1.2162666
37.
M. M. Parish and P. B. Littlewood, Nature 426, 162 (2003).
http://dx.doi.org/10.1038/nature02073
38.
D. Bhoi, P. Mandal, P. Choudhury, S. Pandya, and V. Ganesan, Appl. Phys. Lett. 98, 172105 (2011).
http://dx.doi.org/10.1063/1.3584023
http://aip.metastore.ingenta.com/content/aip/journal/apl/109/11/10.1063/1.4962393
Loading
/content/aip/journal/apl/109/11/10.1063/1.4962393
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/109/11/10.1063/1.4962393
2016-09-12
2016-09-27

Abstract

We report the investigation into a large enhancement of the magnetoresistance (MR) by Ce doping in Si epitaxial thin films at room temperature. The positive MR is proportional to the square of the magnetic field at low magnetic fields below 5 T, while it increases linearly with regards to the strength of the magnetic field above 5 T. Based on the experimental finding that the change in the donor level corresponds to that of the MR ratio as a function of Ce concentration, the electronic state turns out to be influenced by Ce doping and strongly correlate the magnetotransport characteristics. It is concluded that this MR effect appears via the Lorentz force effect on the carrier motion, which is enhanced by the random scattering potential distribution arising from the Ce doping.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/109/11/1.4962393.html;jsessionid=tC9BgfE_GbJ5ghkYk_8BaKWq.x-aip-live-06?itemId=/content/aip/journal/apl/109/11/10.1063/1.4962393&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/109/11/10.1063/1.4962393&pageURL=http://scitation.aip.org/content/aip/journal/apl/109/11/10.1063/1.4962393'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,