Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/109/11/10.1063/1.4962433
1.
Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature 438(7065), 201204 (2005).
http://dx.doi.org/10.1038/nature04235
2.
Y.-M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, Nano Lett. 9(1), 422426 (2009).
http://dx.doi.org/10.1021/nl803316h
3.
A. K. Geim and K. S. Novoselov, Nat. Mater. 6(3), 183191 (2007).
http://dx.doi.org/10.1038/nmat1849
4.
X. Huang, Z. Y. Yin, S. X. Wu, X. Y. Qi, Q. Y. He, Q. C. Zhang, Q. Y. Yan, F. Boey, and H. Zhang, Small 7(14), 18761902 (2011).
http://dx.doi.org/10.1002/smll.201002009
5.
H. Jiang, Small 7(17), 24132427 (2011).
6.
F. Schwierz, Nat. Nanotechnol. 5(7), 487496 (2010).
http://dx.doi.org/10.1038/nnano.2010.89
7.
Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu, A. Grill, and P. Avouris, Science 327(5966), 662662 (2010).
http://dx.doi.org/10.1126/science.1184289
8.
F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, and P. Avouris, Nat. Nanotechnol. 4(12), 839843 (2009).
http://dx.doi.org/10.1038/nnano.2009.292
9.
M. Asif Khan, J. N. Kuznia, D. T. Olson, M. Blasingame, and A. R. Bhattarai, Appl. Phys. Lett. 63(18), 24552456 (1993).
http://dx.doi.org/10.1063/1.110473
10.
V. Podzorov, M. E. Gershenson, C. Kloc, R. Zeis, and E. Bucher, Appl. Phys. Lett. 84(17), 33013303 (2004).
http://dx.doi.org/10.1063/1.1723695
11.
P. Hu, Z. Wen, L. Wang, P. Tan, and K. Xiao, ACS Nano 6(7), 59885994 (2012).
http://dx.doi.org/10.1021/nn300889c
12.
D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, ACS Nano 8(2), 11021120 (2014).
http://dx.doi.org/10.1021/nn500064s
13.
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nat. Nanotechnol. 7(11), 699712 (2012).
http://dx.doi.org/10.1038/nnano.2012.193
14.
S. Lee and Z. Zhong, Nanoscale 6(22), 1328313300 (2014).
http://dx.doi.org/10.1039/C4NR03670K
15.
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6(3), 147150 (2011).
http://dx.doi.org/10.1038/nnano.2010.279
16.
O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, Nat. Nanotechnol. 8(7), 497501 (2013).
http://dx.doi.org/10.1038/nnano.2013.100
17.
J. A. Wilson and A. D. Yoffe, Adv. Phys. 18(73), 193335 (1969).
http://dx.doi.org/10.1080/00018736900101307
18.
A. K. Geim and I. V. Grigorieva, Nature 499(7459), 419425 (2013).
http://dx.doi.org/10.1038/nature12385
19.
D. B. Seley, M. Nath, and B. A. Parkinson, J. Mater. Chem. 19(11), 15321534 (2009).
http://dx.doi.org/10.1039/b809187k
20.
K. Friemelt, M. C. Lux-Steiner, and E. Bucher, J. Appl. Phys. 74(8), 52665268 (1993).
http://dx.doi.org/10.1063/1.354268
21.
S. Yang, S. Tongay, Y. Li, Q. Yue, J.-B. Xia, S.-S. Li, J. Li, and S.-H. Wei, Nanoscale 6(13), 72267231 (2014).
http://dx.doi.org/10.1039/c4nr01741b
22.
G. Leicht, H. Berger, and F. Levy, Solid State Commun. 61(9), 531534 (1987).
http://dx.doi.org/10.1016/0038-1098(87)90162-1
23.
M. Bougouma, B. Guel, T. Segato, J. B. Legma, and M. P. D. Ogletree, Bull. Chem. Soc. Ethiop. 22(2), 225236 (2008).
http://dx.doi.org/10.4314/bcse.v22i2.61289
24.
J. Suh, T.-E. Park, D.-Y. Lin, D. Fu, J. Park, H. J. Jung, Y. Chen, C. Ko, C. Jang, Y. Sun, R. Sinclair, J. Chang, S. Tongay, and J. Wu, Nano Lett. 14(12), 69766982 (2014).
http://dx.doi.org/10.1021/nl503251h
25.
M. R. Laskar, D. N. Nath, L. Ma, E. W. Lee, C. H. Lee, T. Kent, Z. Yang, R. Mishra, M. A. Roldan, J.-C. Idrobo, S. T. Pantelides, S. J. Pennycook, R. C. Myers, Y. Wu, and S. Rajan, Appl. Phys. Lett. 104(9), 092104 (2014).
http://dx.doi.org/10.1063/1.4867197
26.
Y. Jin, D. H. Keum, S. J. An, J. Kim, H. S. Lee, and Y. Hee, Adv. Mater. 27(37), 55345540 (2015).
http://dx.doi.org/10.1002/adma.201502278
27.
D. Wolverson, S. Crampin, A. S. Kazemi, A. Ilie, and S. J. Bending, ACS Nano 8(11), 1115411164 (2014).
http://dx.doi.org/10.1021/nn5053926
28.
N. E. Staley, J. Wu, P. Eklund, Y. Liu, L. Li, and Z. Xu, Phys. Rev. B 80(18), 184505 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.184505
29.
Y. Okazaki, T. Tateishi, and Y. Ito, Mater. Trans. JIM 38(1), 7884 (1997).
http://dx.doi.org/10.2320/matertrans1989.38.78
30.
X. Wang, L. Huang, Y. Peng, N. Huo, K. Wu, C. Xia, Z. Wei, S. Tongay, and J. Li, Nano Res. 9(2), 507516 (2016).
http://dx.doi.org/10.1007/s12274-015-0932-6
31.
B. Li, L. Huang, M. Zhong, N. Huo, Y. Li, S. Yang, C. Fan, J. Yang, W. Hu, Z. Wei, and J. Li, ACS Nano 9(2), 12571262 (2015).
http://dx.doi.org/10.1021/nn505048y
32.
Q. Feng, Y. Zhu, J. Hong, M. Zhang, W. Duan, N. Mao, J. Wu, H. Xu, F. Dong, F. Lin, C. Jin, C. Wang, J. Zhang, and L. Xie, Adv. Mater. 26(17), 26482653 (2014).
http://dx.doi.org/10.1002/adma.201306095
33.
L. M. Xie, Nanoscale 7(44), 1839218401 (2015).
http://dx.doi.org/10.1039/C5NR05712D
34.
W. Baltensperger, Philos. Mag. 44(359), 13551363 (1953).
http://dx.doi.org/10.1080/14786441208520405
35.
E. M. Conwell, Phys. Rev. 103(1), 5161 (1956).
http://dx.doi.org/10.1103/PhysRev.103.51
36.
G. L. Pearson and J. Bardeen, Phys. Rev. 75(5), 865883 (1949).
http://dx.doi.org/10.1103/PhysRev.75.865
37.
R. G. Pires, R. M. Dickstein, S. L. Titcomb, and R. L. Anderson, Cryogenics 30(12), 10641068 (1990).
http://dx.doi.org/10.1016/0011-2275(90)90208-T
38.
M. Buscema, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, Nano Lett. 14(6), 33473352 (2014).
http://dx.doi.org/10.1021/nl5008085
39.
Y. Hayashi, M. Arita, K. Koga, and M. Masuda, J. Alloys Compd. 231(1), 702705 (1995).
http://dx.doi.org/10.1016/0925-8388(95)01756-9
40.
B. Mukherjee, M. Mukherjee, Y. Choi, and S. Pyo, J. Phys. Chem. C 113(43), 1887018873 (2009).
http://dx.doi.org/10.1021/jp906102r
41.
H. S. Lee, S.-W. Min, Y.-G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, and S. Im, Nano Lett. 12(7), 36953700 (2012).
http://dx.doi.org/10.1021/nl301485q
42.
Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, ACS Nano 6(1), 7480 (2012).
http://dx.doi.org/10.1021/nn2024557
http://aip.metastore.ingenta.com/content/aip/journal/apl/109/11/10.1063/1.4962433
Loading
/content/aip/journal/apl/109/11/10.1063/1.4962433
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/109/11/10.1063/1.4962433
2016-09-13
2016-09-29

Abstract

Both N-type and P-type semiconducting materials are essential in the integrated circuit and optoelectronic industry. Herein, the intrinsic P-type ReSe is converted to N-type by Nb-alloying. Despite the efficient carrier type conversion, we also measured the electric characteristics and photo-response of few-layer Nb ReSe based field-effect transistors under different lasers. The devices showed comparable mobility with pristine ReSe (on the order of 0.1 cm2 V−1 s−1). Moreover, such Nb ReSe shows high sensitivity to different visible lasers and has a light-improved mobility up to 1 cm2 V−1 s−1. The highest photoresponsivity reaches 11.7 A/W and external quantum efficiency reaches 2730% under 532 nm laser.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/109/11/1.4962433.html;jsessionid=1cWI9Mw-NlXR2EEJtrZ9mYTq.x-aip-live-03?itemId=/content/aip/journal/apl/109/11/10.1063/1.4962433&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/109/11/10.1063/1.4962433&pageURL=http://scitation.aip.org/content/aip/journal/apl/109/11/10.1063/1.4962433'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,