Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/109/11/10.1063/1.4962486
1.
V. Kouznetsov, K. Macak, J. M. Schneider, U. Helmersson, and I. Petrov, Surf. Coat. Technol. 122, 290 (1999).
http://dx.doi.org/10.1016/S0257-8972(99)00292-3
2.
K. Sarakinos, J. Alami, and S. Konstantinidis, Surf. Coat. Technol. 204, 1661 (2010).
http://dx.doi.org/10.1016/j.surfcoat.2009.11.013
3.
U. Helmersson, M. Lattemann, J. Bohlmark, A. P. Ehiasarian, and J. T. Gudmundsson, Thin Solid Films 513, 1 (2006).
http://dx.doi.org/10.1016/j.tsf.2006.03.033
4.
M. Hála, R. Vernhes, O. Zabeida, E. Bousser, J. E. Klemberg-Sapieha, R. Sargent, and L. Martinu, Surf. Coat. Technol. 214, 33 (2014).
http://dx.doi.org/10.1016/j.surfcoat.2013.08.024
5.
J.-P. Fortier, B. Baloukas, O. Zabeida, J. E. Klemberg-Sapieha, and L. Martinu, Sol. Energy Mater. Sol. Cells 125, 291 (2014).
http://dx.doi.org/10.1016/j.solmat.2014.03.007
6.
S. Loquai, B. Baloukas, O. Zabeida, J. E. Klemberg-Sapieha, and L. Martinu, Sol. Energy Mater. Sol. Cells 155, 60 (2016).
http://dx.doi.org/10.1016/j.solmat.2016.04.048
7.
A. Anders, J. Čapek, M. Hála, and L. Martinu, J. Phys. D: Appl. Phys. 45, 012003 (2012).
http://dx.doi.org/10.1088/0022-3727/45/1/012003
8.
C. Maszl, W. Breilmann, J. Benedikt, and A. von Keudell, J. Phys. D: Appl. Phys. 47, 224002 (2014).
http://dx.doi.org/10.1088/0022-3727/47/22/224002
9.
A. Hecimovic, M. Böke, and J. Winter, J. Phys. D: Appl. Phys. 47, 102003 (2014).
http://dx.doi.org/10.1088/0022-3727/47/10/102003
10.
S. Gallian, W. N. G. Hitchon, D. Eremin, T. Mussenbrock, and R. P. Brinkmann, Plasma Sources Sci. Technol. 22, 055012 (2013).
http://dx.doi.org/10.1088/0963-0252/22/5/055012
11.
A. Anders, M. Panjan, R. Franz, J. Andersson, and P. Ni, Appl. Phys. Lett. 103, 144103 (2013).
http://dx.doi.org/10.1063/1.4823827
12.
M. Panjan, S. Loquai, J. E. Klemberg-Sapieha, and L. Martinu, Plasma Sources Sci. Technol. 24, 065010 (2015).
http://dx.doi.org/10.1088/0963-0252/24/6/065010
13.
C. Vitelaru, D. Lundin, N. Brenning, and T. Minea, Appl. Phys. Lett. 103, 104105 (2013).
http://dx.doi.org/10.1063/1.4819835
14.
M. Bowes and J. W. Bradley, Surf. Coat. Technol. 250, 2 (2014).
http://dx.doi.org/10.1016/j.surfcoat.2014.02.009
15.
M. Hala, N. Viau, O. Zabeida, J. E. Klemberg-Sapieha, and L. Martinu, J. Appl. Phys. 107, 043305 (2010).
http://dx.doi.org/10.1063/1.3305319
16.
M. Hála, O. Zabeida, B. Baloukas, J. E. Klemberg-Sapieha, and L. Martinu, IEEE Trans. Plasma Sci. 38, 3035 (2010).
http://dx.doi.org/10.1109/TPS.2010.2064183
17.
N. Britun, M. Palmucci, S. Konstantinidis, and R. Snyders, J. Appl. Phys. 117(16), 163302 (2015).
http://dx.doi.org/10.1063/1.4919006
18.
M. Čada, Z. Hubička, P. Adámek, J. Klusoň, and L. Jastrabík, Surf. Coat. Technol. 205, S317 (2011).
http://dx.doi.org/10.1016/j.surfcoat.2010.11.050
19.
J. T. Gudmundsson, J. Alami, and U. Helmersson, Appl. Phys. Lett. 78, 3427 (2001).
http://dx.doi.org/10.1063/1.1376150
20.
G. Piech, J. Boffard, M. Gehrke, L. Anderson, and C. Lin, Phys. Rev. Lett. 81, 309 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.309
21.
M. Bowes and J. W. Bradley, J. Phys. D: Appl. Phys. 47, 265202 (2014).
http://dx.doi.org/10.1088/0022-3727/47/26/265202
22.
C. Vitelaru, D. Lundin, G. D. Stancu, N. Brenning, J. Bretagne, and T. Minea, Plasma Sources Sci. Technol. 21, 025010 (2012).
http://dx.doi.org/10.1088/0963-0252/21/2/025010
23.
J. T. Gudmundsson, T. Kimura, and M. A. Lieberman, Plasma Sources Sci. Technol. 8, 22 (1999).
http://dx.doi.org/10.1088/0963-0252/8/1/003
24.
J. I. Steinfeld, Molecules and Radiation: An Introduction to Modern Molecular Spectroscopy, 2nd ed. ( MIT Press, Cambridge, 1985).
http://aip.metastore.ingenta.com/content/aip/journal/apl/109/11/10.1063/1.4962486
Loading
/content/aip/journal/apl/109/11/10.1063/1.4962486
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/109/11/10.1063/1.4962486
2016-09-12
2016-09-27

Abstract

In the present work, time-, space- and species-resolved optical emission spectroscopy has been applied to investigate post-pulse behavior of the reactive High Power Impulse Magnetron Sputtering (HiPIMS) process with a partially poisoned target. Following each pulse, at a high O/Ar ratio, a well-defined post-discharge emission zone detaches from the target during the first few microseconds of the electron cool-down; this zone exhibits high emission intensity in the near-surface region, and it moves toward the substrate holder. We link this behavior to a localized high density of metastable molecular oxygen, and to the electron attachment dissociation of oxygen.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/109/11/1.4962486.html;jsessionid=YwVK47WC9oh_z10O-ylL9QTm.x-aip-live-02?itemId=/content/aip/journal/apl/109/11/10.1063/1.4962486&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/109/11/10.1063/1.4962486&pageURL=http://scitation.aip.org/content/aip/journal/apl/109/11/10.1063/1.4962486'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,