Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/109/11/10.1063/1.4962536
1.
N. A. Spaldin and M. Fiebig, Science 309(5733), 391 (2005).
http://dx.doi.org/10.1126/science.1113357
2.
C. W. Nan, M. I. Bichurin, S. X. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys. 103(3), 031101 (2008).
http://dx.doi.org/10.1063/1.2836410
3.
C. A. F. Vaz, J. Hoffman, C. H. Ahn, and R. Ramesh, Adv. Mater. 22(26–27), 2900 (2010).
http://dx.doi.org/10.1002/adma.200904326
4.
H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Nat. Mater. 11(2), 103 (2012).
http://dx.doi.org/10.1038/nmat3223
5.
M. Bibes, J. E. Villegas, and A. Barthelemy, Adv. Phys. 60(1), 5 (2011).
http://dx.doi.org/10.1080/00018732.2010.534865
6.
Y. Wang, J. M. Hu, Y. H. Lin, and C. W. Nan, NPG Asia Mater. 2(2), 61 (2010).
http://dx.doi.org/10.1038/asiamat.2010.32
7.
R. Ramesh and N. A. Spaldin, Nat. Mater. 6(1), 21 (2007).
http://dx.doi.org/10.1038/nmat1805
8.
G. Lawes and G. Srinivasan, J. Phys. D: Appl. Phys. 44(24), 243001 (2011).
http://dx.doi.org/10.1088/0022-3727/44/24/243001
9.
L. W. Martin, Y. H. Chu, and R. Ramesh, Mater. Sci. Eng., R 68(4–6), 89 (2010).
http://dx.doi.org/10.1016/j.mser.2010.03.001
10.
L. Martin, S. P. Crane, Y. H. Chu, M. B. Holcomb, M. Gajek, M. Huijben, C. H. Yang, N. Balke, and R. Ramesh, J. Phys.: Condens. Matter 20(43), 434220 (2008).
http://dx.doi.org/10.1088/0953-8984/20/43/434220
11.
W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442(7104), 759 (2006).
http://dx.doi.org/10.1038/nature05023
12.
H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh, Science 303(5658), 661 (2004).
http://dx.doi.org/10.1126/science.1094207
13.
N. M. Aimon, H. K. Choi, X. Y. Sun, D. H. Kim, and C. A. Ross, Adv. Mater. 26(19), 3063 (2014).
http://dx.doi.org/10.1002/adma.201305459
14.
X. L. Zhong, J. B. Wang, M. Liao, G. J. Huang, S. H. Xie, Y. C. Zhou, Y. Qiao, and J. P. He, Appl. Phys. Lett. 90(15), 152903 (2007).
http://dx.doi.org/10.1063/1.2709946
15.
H. Ryu, P. Murugavel, J. H. Lee, S. C. Chae, T. W. Noh, Y. S. Oh, H. J. Kim, K. H. Kim, J. H. Jang, M. Kim, C. Bae, and J.-G. Park, Appl. Phys. Lett. 89(10), 102907 (2006).
http://dx.doi.org/10.1063/1.2338766
16.
J. G. Wan, X. W. Wang, Y. J. Wu, M. Zeng, Y. Wang, H. Jiang, W. Q. Zhou, G. H. Wang, and J. M. Liu, Appl. Phys. Lett. 86(12), 122501 (2005).
http://dx.doi.org/10.1063/1.1889237
17.
Y. G. Ma, W. N. Cheng, M. Ning, and C. K. Ong, Appl. Phys. Lett. 90(15), 152911 (2007).
http://dx.doi.org/10.1063/1.2723645
18.
T. Wu, M. A. Zurbuchen, S. Saha, R. V. Wang, S. K. Streiffer, and J. F. Mitchell, Phys. Rev. B 73(13), 134416 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.134416
19.
Z. Li, Y. Gao, B. Yang, Y. H. Lin, R. Yu, and C. W. Nan, J. Am. Ceram. Soc. 94(4), 1060 (2011).
http://dx.doi.org/10.1111/j.1551-2916.2010.04195.x
20.
W. Chen, W. G. Zhu, X. F. Chen, and Z. H. Wang, J. Am. Ceram. Soc. 93(3), 796 (2010).
http://dx.doi.org/10.1111/j.1551-2916.2009.03463.x
21.
L. Y. Ding, F. X. Wu, Y. B. Chen, Z. B. Gu, and S. T. Zhang, Appl. Surf. Sci. 257(9), 3840 (2011).
http://dx.doi.org/10.1016/j.apsusc.2010.11.031
22.
K. Tahmasebi, A. Barzegar, J. Ding, T. S. Herng, L. Huang, A. Huang, and S. Shannigrahi, Thin Solid Films 537, 76 (2013).
http://dx.doi.org/10.1016/j.tsf.2013.04.042
23.
S. Basu, K. R. Babu, and R. N. P. Choudhary, Mater. Chem. Phys. 132(2–3), 570 (2012).
http://dx.doi.org/10.1016/j.matchemphys.2011.11.071
24.
N. Ortega, P. Bhattacharya, R. S. Katiyar, P. Dutta, A. Manivannan, M. S. Seehra, I. Takeuchi, and S. B. Majumder, J. Appl. Phys. 100(12), 126105 (2006).
http://dx.doi.org/10.1063/1.2400795
25.
M. Liu, X. Li, J. Lou, S. J. Zheng, K. Du, and N. X. Sun, J. Appl. Phys. 102(8), 083911 (2007).
http://dx.doi.org/10.1063/1.2800804
26.
J. G. Wan, H. Zhang, X. W. Wang, D. Y. Pan, J. M. Liu, and G. H. Wang, Appl. Phys. Lett. 89(12), 122914 (2006).
http://dx.doi.org/10.1063/1.2357589
27.
M. Ogawa, J. Am. Chem. Soc. 116(17), 7941 (1994).
http://dx.doi.org/10.1021/ja00096a079
28.
C. J. Brinker, Y. F. Lu, A. Sellinger, and H. Y. Fan, Adv. Mater. 11(7), 579 (1999).
http://dx.doi.org/10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.0.CO;2-R
29.
T. Brezesinski, M. Groenewolt, A. Gibaud, N. Pinna, M. Antonietti, and B. M. Smarsly, Adv. Mater. 18(17), 2260 (2006).
http://dx.doi.org/10.1002/adma.200600258
30.
M. Mamak, N. Coombs, and G. Ozin, Adv. Mater. 12(3), 198 (2000).
http://dx.doi.org/10.1002/(SICI)1521-4095(200002)12:3<198::AID-ADMA198>3.0.CO;2-2
31.
P. D. Yang, T. Deng, D. Y. Zhao, P. Y. Feng, D. Pine, B. F. Chmelka, G. M. Whitesides, and G. D. Stucky, Science 282(5397), 2244 (1998).
http://dx.doi.org/10.1126/science.282.5397.2244
32.
D. Fattakhova-Rohfing, T. Brezesinski, J. Rathousky, A. Feldhoff, T. Oekermann, M. Wark, and B. Smarsly, Adv. Mater. 18(22), 2980 (2006).
http://dx.doi.org/10.1002/adma.200601224
33.
T. E. Quickel, L. T. Schelhas, R. A. Farrell, N. Petkov, V. H. Le, and S. H. Tolbert, Nat. Commun. 6, 6562 (2015).
http://dx.doi.org/10.1038/ncomms7562
34.
T. E. Quickel, V. H. Le, T. Brezesinski, and S. H. Tolbert, Nano Lett. 10(8), 2982 (2010).
http://dx.doi.org/10.1021/nl1014266
35.
S. M. George, Chem. Rev. 110(1), 111 (2010).
http://dx.doi.org/10.1021/cr900056b
36.
J. H. Choi, F. Zhang, Y. C. Perng, and J. P. Chang, J. Vac. Sci. Technol. B 31(1), 012207 (2013).
http://dx.doi.org/10.1116/1.4775789
37.
F. Zhang, Y. C. Perng, J. H. Choi, T. Wu, T. K. Chung, G. P. Carman, C. Locke, S. Thomas, S. E. Saddow, and J. P. Chang, J. Appl. Phys. 109(12), 124109 (2011).
http://dx.doi.org/10.1063/1.3596574
38.
O. Sugiyama, K. Murakami, and S. Kaneko, J. Eur. Ceram. Soc. 24(6), 11571160 (2004).
http://dx.doi.org/10.1016/S0955-2219(03)00590-9
39.
M. R. Baklanov, K. P. Mogilnikov, V. G. Polovinkin, and F. N. Dultsev, J. Vac. Sci. Technol. B 18(3), 1385 (2000).
http://dx.doi.org/10.1116/1.591390
40.
S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area, and Porosity, 2nd ed. ( Academic Press, London, New York, 1982), p. xi.
41.
J. M. Benedetto, R. A. Moore, and F. B. McLean, J. Appl. Phys. 75, 460 (1994).
http://dx.doi.org/10.1063/1.355875
42.
I. G. Jenkins, T. K. Song, S. Madhukar, A. S. Prakash, S. Aggarwal, and R. Ramesh, Appl. Phys. Lett. 72, 3300 (1998).
http://dx.doi.org/10.1063/1.121630
43.
S. Dunn, Integr. Ferroelectr. 59, 15051512 (2003).
http://dx.doi.org/10.1080/10584580390259993
44.
T. Choi, J.-S. Kim, B. H. Park, H. Shin, and J. Lee, Ferroelectrics 336(1), 271277 (2006).
http://dx.doi.org/10.1080/00150190600697913
45.
S. Zhang, Y. G. Zhao, P. S. Li, J. J. Yang, S. Rizwan, J. X. Zhang, J. Seidel, T. L. Qu, Y. J. Yang, Z. L. Luo, Q. He, T. Zou, Q. P. Chen, J. W. Wang, L. F. Yang, Y. Sun, Y. Z. Wu, X. Xiao, X. F. Jin, J. Huang, C. Gao, X. F. Han, and R. Ramesh, Phys. Rev. Lett. 108, 137203 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.137203
46.
J. J. Yang, Y. G. Zhao, H. F. Tian, L. B. Luo, H. Y. Zhang, Y. J. He, and H. S. Luo, Appl. Phys. Lett. 94, 212504 (2009).
http://dx.doi.org/10.1063/1.3143622
http://aip.metastore.ingenta.com/content/aip/journal/apl/109/11/10.1063/1.4962536
Loading
/content/aip/journal/apl/109/11/10.1063/1.4962536
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/109/11/10.1063/1.4962536
2016-09-16
2016-10-01

Abstract

In this manuscript, we examine ways to create multiferroic composites with controlled nanoscale architecture. We accomplished this by uniformly depositing piezoelectric lead zirconate titanate (PZT) into templated mesoporous, magnetostrictive cobalt ferrite (CFO) thin films to form nanocomposites in which strain can be transferred at the interface between the two materials. To study the magnetoelectric coupling, the nanostructure was electrically poled prior to magnetic measurements. No samples showed a change in in-plane magnetization as a function of voltage due to substrate clamping. Out-of-plane changes were observed, but contrary to expectations based on total PZT volume fraction, mesoporous CFO samples partially filled with PZT showed more change in out-of-plane magnetization than the sample with fully filled pores. This result suggests that residual porosity in the composite adds mechanical flexibility and results in greater magnetoelectric coupling.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/109/11/1.4962536.html;jsessionid=ZOEU6cm-fX8HtNAXkEbeW9yn.x-aip-live-02?itemId=/content/aip/journal/apl/109/11/10.1063/1.4962536&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/109/11/10.1063/1.4962536&pageURL=http://scitation.aip.org/content/aip/journal/apl/109/11/10.1063/1.4962536'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,