Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/109/11/10.1063/1.4962551
1.
L. Yu, Y.-H. Lee, X. Ling, E. J. G. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, Nano Lett. 14, 3055 (2014).
http://dx.doi.org/10.1021/nl404795z
2.
H. Tian, Z. Tan, C. Wu, X. Wang, M. A. Mohammad, D. Xie, Y. Yang, J. Wang, L.-J. Li, J. Xu, and T.-L. Ren, Sci. Rep. 4, 5951 (2014).
http://dx.doi.org/10.1038/srep05951
3.
L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, Science 335, 947 (2012).
http://dx.doi.org/10.1126/science.1218461
4.
J. Y. Kwak, J. Hwang, B. Calderon, H. Alsalman, N. Munoz, B. Schutter, and M. G. Spencer, Nano Lett. 14, 4511 (2014).
http://dx.doi.org/10.1021/nl5015316
5.
F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, Nat. Photonics 8, 899 (2014).
http://dx.doi.org/10.1038/nphoton.2014.271
6.
W. Zhang, C.-P. Chuu, J.-K. Huang, C.-H. Chen, M.-L. Tsai, Y.-H. Chang, C.-T. Liang, J.-H. He, M.-Y. Chou, and L.-J. Li, Sci. Rep. 4, 3826 (2014).
http://dx.doi.org/10.1038/srep03826
7.
D. Pierucci, H. Sediri, M. Hajlaoui, E. Velez-Fort, Y. J. Dappe, M. G. Silly, R. Belkhou, A. Shukla, F. Sirotti, N. Gogneau, and A. Ouerghi, Nano Res. 8(3), 10261037 (2015).
http://dx.doi.org/10.1007/s12274-014-0584-y
8.
X. Li, J. Wu, N. Mao, J. Zhang, Z. Lei, Z. Liu, and H. Xu, Carbon 92, 126 (2015).
http://dx.doi.org/10.1016/j.carbon.2015.03.064
9.
F. H. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, Nat. Nanotechnol. 9, 780 (2014).
http://dx.doi.org/10.1038/nnano.2014.215
10.
O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, Nat. Nanotechnol. 8, 497 (2013).
http://dx.doi.org/10.1038/nnano.2013.100
11.
K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, Nature 490, 192 (2012).
http://dx.doi.org/10.1038/nature11458
12.
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).
http://dx.doi.org/10.1038/nnano.2010.279
13.
P. Miró, M. Audiffred, and T. Heine, Chem. Soc. Rev. 43, 6537 (2014).
http://dx.doi.org/10.1039/C4CS00102H
14.
E. Lhuillier, S. Pedetti, S. Ithurria, B. Nadal, H. Heuclin, and B. Dubertret, Acc. Chem. Res. 48, 22 (2015).
http://dx.doi.org/10.1021/ar500326c
15.
G. H. Han, N. J. Kybert, C. H. Naylor, B. S. Lee, J. Ping, J. H. Park, J. Kang, S. Y. Lee, Y. H. Lee, R. Agarwal, and A. T. C. Johnson, Nat. Commun. 6, 6128 (2015).
http://dx.doi.org/10.1038/ncomms7128
16.
Y.-C. Lin, N. Lu, N. Perea-Lopez, J. Li, Z. Lin, X. Peng, C. H. Lee, C. Sun, L. Calderin, P. N. Browning, M. S. Bresnehan, M. J. Kim, T. S. Mayer, M. Terrones, and J. A. Robinson, ACS Nano 8, 3715 (2014).
http://dx.doi.org/10.1021/nn5003858
17.
L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, Science 340, 1311 (2013).
http://dx.doi.org/10.1126/science.1235547
18.
S. Rathi, I. Lee, D. Lim, J. Wang, Y. Ochiai, N. Aoki, K. Watanabe, T. Taniguchi, G.-H. Lee, Y.-J. Yu, P. Kim, and G.-H. Kim, Nano Lett. 15, 5017 (2015).
http://dx.doi.org/10.1021/acs.nanolett.5b01030
19.
C. J. Shih, Q. H. Wang, Y. Son, Z. Jin, D. Blankschtein, and M. S. Strano, ACS Nano 8, 5790 (2014).
http://dx.doi.org/10.1021/nn500676t
20.
C.-H. Lee, G.-H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, Nat. Nanotechnol. 9, 676 (2014).
http://dx.doi.org/10.1038/nnano.2014.150
21.
K. T. Lam, G. Seol, and J. Guo, Appl. Phys. Lett. 105, 013112 (2014).
http://dx.doi.org/10.1063/1.4890084
22.
T. Roy, M. Tosun, J. S. Kang, A. B. Sachid, S. B. Desai, M. Hettick, C. C. Hu, and A. Javey, ACS Nano 8, 6259 (2014).
http://dx.doi.org/10.1021/nn501723y
23.
D. Pierucci, H. Henck, C. H. Naylor, H. Sediri, E. Lhuillier, A. Balan, J. E. Rault, Y. J. Dappe, F. Bertran, P. Le Févre, A. T. C. Johnson, and A. Ouerghi, Sci. Rep. 6, 26656 (2016).
http://dx.doi.org/10.1038/srep26656
24.
W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, Nat. Nanotechnol. 8, 952 (2013).
http://dx.doi.org/10.1038/nnano.2013.219
25.
M. Buscema, J. O. Island, D. J. Groenendijk, S. I. Blanter, G. A. Steele, H. S. van der Zant, and A. Castellanos-Gomez, Chem. Soc. Rev. 44, 3691 (2015).
http://dx.doi.org/10.1039/C5CS00106D
26.
E. Velez-fort, C. Mathieu, E. Pallecchi, M. Pigneur, M. G. Silly, R. Belkhou, M. Marangolo, A. Shukla, F. Sirotti, and A. Ouerghi, ACS Nano 6, 10893 (2012).
http://dx.doi.org/10.1021/nn304315z
27.
E. Pallecchi, F. Lafont, V. Cavaliere, F. Schopfer, D. Mailly, W. Poirier, and A. Ouerghi, Sci. Rep. 4, 4558 (2014).
http://dx.doi.org/10.1038/srep04558
28.
H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, Adv. Funct. Mater. 22, 1385 (2012).
http://dx.doi.org/10.1002/adfm.201102111
29.
C. Lee, H. Yan, L. E. Brus, T. F. Heinz, Ќ. J. Hone, and S. Ryu, ACS Nano 4, 2695 (2010).
http://dx.doi.org/10.1021/nn1003937
30.
A. Ouerghi, R. Belkhou, M. Marangolo, M. G. Silly, S. El Moussaoui, M. Eddrief, L. Largeau, M. Portail, and F. Sirotti, Appl. Phys. Lett. 97, 161905 (2010).
http://dx.doi.org/10.1063/1.3497287
31.
K. V. Emtsev, F. Speck, T. Seyller, L. Ley, and J. D. Riley, Phys. Rev. B 77, 155303 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.155303
32.
P. D. Fleischauer and J. R. Lince, Tribol. Int. 32, 627 (1999).
http://dx.doi.org/10.1016/S0301-679X(99)00088-2
33.
E. Lhuillier, S. Ithurria, A. Descamps-Mandine, T. Douillard, R. Castaing, X. Z. Xu, P.-L. Taberna, P. Simon, H. Aubin, and B. Dubertret, J. Phys. Chem. C 119, 21795 (2015).
http://dx.doi.org/10.1021/acs.jpcc.5b05296
34.
E. Lhuillier, A. Robin, S. Ithurria, H. Aubin, and B. Dubertret, Nano Lett. 14, 2715 (2014).
http://dx.doi.org/10.1021/nl5006383
35.
Y. Zhang, J. Ye, Y. Yomogida, T. Takenobu, and Y. Iwasa, Nano Lett. 13, 3023 (2013).
http://dx.doi.org/10.1021/nl400902v
36.
G. Froehlicher and S. Berciaud, Phys. Rev. B 91, 205413 (2015).
http://dx.doi.org/10.1103/PhysRevB.91.205413
37.
A. Robin, E. Lhuillier, X. Z. Xu, S. Ithurria, H. Aubin, A. Ouerghi, and B. Dubertret, Sci. Rep. 6, 24909 (2016).
http://dx.doi.org/10.1038/srep24909
38.
Y. Choi, J. Kang, D. Jariwala, M. S. Kang, T. J. Marks, M. C. Hersam, and J. H. Cho, Adv. Mat. 28, 3742 (2016).
http://dx.doi.org/10.1002/adma.201506450
39.
H. Sediri, D. Pierucci, M. Hajlaoui, H. Henck, G. Patriarche, Y. J. Dappe, S. Yuan, B. Toury, R. Belkhou, M. G. Silly, F. Sirotti, M. Boutchich, and A. Ouerghi, Sci. Rep. 5, 16465 (2015).
http://dx.doi.org/10.1038/srep16465
40.
Y. Li, C.-Y. Xu, J.-K. Qin, W. Feng, J.-Y. Wang, S. Zhang, L.-P. Ma, J. Cao, P. A. Hu, W. Ren, and L. Zhen, Adv. Funct. Mater. 26, 293 (2016).
http://dx.doi.org/10.1002/adfm.201503131
41.
A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, Nano Lett. 10, 1271 (2010).
http://dx.doi.org/10.1021/nl903868w
42.
G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, Nano Lett. 11, 5111 (2011).
http://dx.doi.org/10.1021/nl201874w
43.
K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.136805
44.
X. Liu, I. Balla, H. Bergeron, G. P. Campbell, M. J. Bedzyk, and M. C. Hersam, ACS Nano 10, 1067 (2016).
http://dx.doi.org/10.1021/acsnano.5b06398
45.
D. Jariwala, V. K. Sangwan, C.-C. C.-C. Wu, P. L. Prabhumirashi, M. L. Geier, T. J. Marks, L. J. Lauhon, and M. C. Hersam, Proc. Natl. Acad. Sci. 110, 18076 (2013).
http://dx.doi.org/10.1073/pnas.1317226110
46.
M. M. Furchi, D. K. Polyushkin, A. Pospischil, and T. Mueller, Nano Lett. 14, 6165 (2014).
http://dx.doi.org/10.1021/nl502339q
http://aip.metastore.ingenta.com/content/aip/journal/apl/109/11/10.1063/1.4962551
Loading
/content/aip/journal/apl/109/11/10.1063/1.4962551
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/109/11/10.1063/1.4962551
2016-09-12
2016-09-25

Abstract

Van der Waals (vdW) heterostructures obtained by stacking 2D materials offer a promising route for next generation devices by combining different unique properties in completely new artificial materials. In particular, the vdW heterostructures combine high mobility and optical properties that can be exploited for optoelectronic devices. Since the p-n junction is one of the most fundamental units of optoelectronics, we propose an approach for its fabrication based on the intrinsic n doped MoS and the p doped bilayer graphene hybrid interfaces. We demonstrate the control of the photoconduction properties using electrolytic gating which ensures a low bias operation. We show that by finely choosing the doping value of each layer, the photoconductive properties of the hybrid system can be engineered to achieve magnitude and sign control of the photocurrent. Finally, we provide a simple phase diagram relating the photoconductive behavior with the chosen doping, which we believe can be very useful for the future design of the van der Waals based photodetectors.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/109/11/1.4962551.html;jsessionid=-vDAyaoZ-dk4IziddtQEktmY.x-aip-live-02?itemId=/content/aip/journal/apl/109/11/10.1063/1.4962551&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/109/11/10.1063/1.4962551&pageURL=http://scitation.aip.org/content/aip/journal/apl/109/11/10.1063/1.4962551'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,