Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/109/11/10.1063/1.4962634
1.
B. Guillet, V. Drakinskiy, R. Gunnarsson, O. Arthursson, L. Méchin, S. Cherednichenko, Y. Delorme, and J. M. Krieg, in Proceedings of the 18th International Symposium on Space Terahertz Technology (2007).
2.
F. Sizov, Opto-Electron. Rev. 18(1), 10 (2010).
http://dx.doi.org/10.2478/s11772-009-0029-4
3.
R. J. Schoelkopf, T. G. Phillips, and J. Zmuidzinas, IEEE Trans. Appl. Supercond. 3(1), 2250 (1993).
http://dx.doi.org/10.1109/77.233556
4.
K. K. Likharev, Radio Eng. Electron. Phys. (USSR) 25, 1 (1980).
5.
M. Tarasov, E. Stepantsov, D. Golubev, Z. Ivanov, T. Claeson, O. Harnack, M. Darula, S. Beuven, and H. Kohlstedt, IEEE Trans. Appl. Supercond. 9(2), 3761 (1999).
http://dx.doi.org/10.1109/77.783846
6.
M. Malnou, C. Feuillet-Palma, C. Ulysse, G. Faini, P. Febvre, M. Sirena, L. Olanier, J. Lesueur, and N. Bergeal, J. Appl. Phys. 116(7), 074505 (2014).
http://dx.doi.org/10.1063/1.4892940
7.
J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410(6824), 63 (2001).
http://dx.doi.org/10.1038/35065039
8.
X. X. Xi, A. V. Pogrebnyakov, S. Y. Xu, K. Chen, Y. Cui, E. C. Maertz, C. G. Zhuang, Q. Li, D. R. Lamborn, J. M. Redwing, Z. K. Liu, A. Soukiassian, D. G. Schlom, X. J. Weng, E. C. Dickey, Y. B. Chen, W. Tian, X. Q. Pan, S. A. Cybart, and R. C. Dynes, Phys. C 456(1–2), 22 (2007).
http://dx.doi.org/10.1016/j.physc.2007.01.029
9.
Y. Wang, C. G. Zhuang, X. Sun, X. Huang, Q. Fu, Z. Liao, D. Yu, and Q. R. Feng, Supercond. Sci. Technol. 22(12), 125015 (2009).
http://dx.doi.org/10.1088/0953-2048/22/12/125015
10.
D. Cunnane, J. H. Kawamura, B. S. Karasik, M. A. Wolak, and X. X. Xi, Proc. SPIE 9153, 91531Q (2014).
http://dx.doi.org/10.1117/12.2054607
11.
D. Cunnane, J. H. Kawamura, M. A. Wolak, N. Acharya, T. Tan, X. X. Xi, and B. S. Karasik, IEEE Trans. Appl. Supercond. 25(3), 2300206 (2015).
http://dx.doi.org/10.1109/TASC.2014.2369353
12.
N. Acharya, M. A. Wolak, T. Tan, N. Lee, A. C. Lang, M. Taheri, D. Cunnane, B. S. Karasik, and X. X. Xi, APL Mater. 4, 086114 (2016).
http://dx.doi.org/10.1063/1.4961635
13.
S. Cherednichenko, V. Drakinskiy, T. Berg, P. Khosropanah, and E. Kollberg, Rev. Sci. Instrum. 79(3), 034501 (2008).
http://dx.doi.org/10.1063/1.2890099
14.
V. Ambegaokar and A. Baratoff, Phys. Rev. Lett. 10(11), 486 (1963).
http://dx.doi.org/10.1103/PhysRevLett.10.486
15.
A. Brinkman, A. A. Golubov, H. Rogalla, O. V. Dolgov, J. Kortus, Y. Kong, O. Jepsen, and O. K. Andersen, Phys. Rev. B 65(18), 180517(R) (2002).
http://dx.doi.org/10.1103/PhysRevB.65.180517
16.
J. C. Cuevas, J. Heurich, A. Martin-Rodero, A. Yeyati, and G. Schon, Phys. Rev. Lett. 88(15), 157001 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.157001
17.
W. Zhang, W. Miao, S. L. Li, K. M. Zhou, S. C. Shi, J. R. Gao, and G. N. Goltsman, IEEE Trans. Appl. Supercond. 23(3), 2300804 (2013).
http://dx.doi.org/10.1109/TASC.2013.2245173
18.
D. J. Benford, M. C. Gaidis, and J. W. Kooi, Appl. Opt. 42(25), 5118 (2003).
http://dx.doi.org/10.1364/AO.42.005118
19.
S. A. Cybart, K. Chen, Y. Cui, Q. Li, X. X. Xi, and R. C. Dynes, Appl. Phys. Lett. 88(1), 012509 (2006).
http://dx.doi.org/10.1063/1.2162669
20.
S. A. Cybart, T. J. Wong, E. Y. Cho, J. W. Beeman, C. S. Yung, B. H. Moeckly, and R. C. Dynes, Appl. Phys. Lett. 104, 182604 (2014).
http://dx.doi.org/10.1063/1.4876129
http://aip.metastore.ingenta.com/content/aip/journal/apl/109/11/10.1063/1.4962634
Loading
/content/aip/journal/apl/109/11/10.1063/1.4962634
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/109/11/10.1063/1.4962634
2016-09-12
2016-09-27

Abstract

The potential applications for high frequency operation of the Josephson effect in MgB include THz mixers, direct detectors, and digital circuits. Here we report on MgB weak links which exhibit the Josephson behavior up to almost 2 THz and using them for low-noise heterodyne detection of THz radiation. The devices are made from epitaxial film grown in the c-axis direction by the hybrid physical-chemical vapor deposition method. The current in the junctions travels parallel to the surface of the film, thus making possible a large contribution of the quasi-two-dimensional σ-gap in transport across the weak link. These devices are connected to a planar spiral antenna with a dielectric substrate lens to facilitate coupling to free-space radiation for use as a detector. The product of the junction is 5.25 mV, giving confirmation of a large gap parameter. The sensitivity of the mixer was measured from 0.6 THz to 1.9 THz. At a bath temperature of over 20 K, a mixer noise temperature less than 2000 K (DSB) was measured near 0.6 THz.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/109/11/1.4962634.html;jsessionid=XgxMcJrdtnWv1sl6iBnus38p.x-aip-live-06?itemId=/content/aip/journal/apl/109/11/10.1063/1.4962634&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/109/11/10.1063/1.4962634&pageURL=http://scitation.aip.org/content/aip/journal/apl/109/11/10.1063/1.4962634'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,