Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/109/11/10.1063/1.4962639
1.
C. M. Bender, Rep. Prog. Phys. 70(6), 947 (2007).
http://dx.doi.org/10.1088/0034-4885/70/6/R03
2.
C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80(24), 5243 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.5243
3.
C. M. Bender, D. C. Brody, and H. F. Jones, Phys. Rev. Lett. 89(27), 270401 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.270401
4.
K. Makris, R. El-Ganainy, D. Christodoulides, and Z. H. Musslimani, Phys. Rev. Lett. 100(10), 103904 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.103904
5.
A. Guo, G. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. Siviloglou, and D. Christodoulides, Phys. Rev. Lett. 103(9), 093902 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.093902
6.
L. Feng, M. Ayache, J. Huang, Y.-L. Xu, M.-H. Lu, Y.-F. Chen, Y. Fainman, and A. Scherer, Science 333(6043), 729 (2011).
http://dx.doi.org/10.1126/science.1206038
7.
R. Fleury and A. Alu, paper presented at 2014 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS), 2014.
8.
R. Fleury, D. Sounas, and A. Alu, Nat. Commun. 6, 5905 (2015).
http://dx.doi.org/10.1038/ncomms6905
9.
R. Fleury, D. Sounas, and A. Alu, J. Acoust. Soc. Am. 136(4), 2099 (2014).
http://dx.doi.org/10.1121/1.4899552
10.
X. Zhu, H. Ramezani, C. Shi, J. Zhu, and X. Zhang, J. Acoust. Soc. Am. 137(4), 2403 (2015).
http://dx.doi.org/10.1121/1.4920752
11.
S. Klaiman, U. Günther, and N. Moiseyev, Phys. Rev. Lett. 101(8), 080402 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.080402
12.
N. Chiodo, G. Della Valle, R. Osellame, S. Longhi, G. Cerullo, R. Ramponi, P. Laporta, and U. Morgner, Opt. Lett. 31(11), 1651 (2006).
http://dx.doi.org/10.1364/OL.31.001651
13.
A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, Nature 488(7410), 167 (2012).
http://dx.doi.org/10.1038/nature11298
14.
B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S.-L. Chua, J. D. Joannopoulos, and M. Soljačić, Nature 525(7569), 354 (2015).
http://dx.doi.org/10.1038/nature14889
15.
A. Cerjan, A. Raman, and S. Fan, Phys. Rev. Lett. 116(20), 203902 (2016).
http://dx.doi.org/10.1103/PhysRevLett.116.203902
16.
L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, Nat. Photonics 8(7), 524 (2014).
http://dx.doi.org/10.1038/nphoton.2014.133
17.
B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Nat. Phys. 10(5), 394 (2014).
http://dx.doi.org/10.1038/nphys2927
18.
L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E. B. Oliveira, V. R. Almeida, Y.-F. Chen, and A. Scherer, Nat. Mater. 12(2), 108 (2013).
http://dx.doi.org/10.1038/nmat3495
19.
S. Longhi, Phys. Rev. Lett. 103(12), 123601 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.123601
20.
Y. D. Chong, L. Ge, and A. D. Stone, Phys. Rev. Lett. 106(9), 093902 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.093902
21.
S. Longhi, Phys. Rev. A 82(3), 031801(R) (2010).
http://dx.doi.org/10.1103/PhysRevA.82.031801
22.
Y. Sun, W. Tan, H.-q. Li, J. Li, and H. Chen, Phys. Rev. Lett. 112(14), 143903 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.143903
23.
L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, Science 346(6212), 972 (2014).
http://dx.doi.org/10.1126/science.1258479
24.
H. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, Science 346(6212), 975 (2014).
http://dx.doi.org/10.1126/science.1258480
25.
M. Khorasaninejad and F. Capasso, Nano Lett. 15(10), 6709 (2015).
http://dx.doi.org/10.1021/acs.nanolett.5b02524
26.
G. Miyaji and K. Miyazaki, Opt. Express 24(5), 4648 (2016).
http://dx.doi.org/10.1364/OE.24.004648
27.
B. Pan and Q. Wang, Opt. Express 21(21), 25056 (2013).
http://dx.doi.org/10.1364/OE.21.025056
28.
O. Nairz, B. Brezger, M. Arndt, and A. Zeilinger, Phys. Rev. Lett. 87(16), 160401 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.160401
29.
M. Kulishov, H. Jones, and B. Kress, Opt. Express 23(7), 9347 (2015).
http://dx.doi.org/10.1364/OE.23.009347
30.
M. Kulishov, H. Jones, and B. Kress, Opt. Express 23(14), 18694 (2015).
http://dx.doi.org/10.1364/OE.23.018694
31.
K. Ding, Z. Q. Zhang, and C. T. Chan, Phys. Rev. B 92(23), 235310 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.235310
32.
A. Mock, Phys. Rev. A 93(6), 063812 (2016).
http://dx.doi.org/10.1103/PhysRevA.93.063812
33.
Y.-L. Xu, L. Feng, M.-H. Lu, and Y.-F. Chen, IEEE Photonics J. 6(1), 0600507 (2014).
http://dx.doi.org/10.1109/JPHOT.2013.2295462
34.
A. Cerjan and S. Fan, “ Eigenvalue dynamics in the presence of non-uniform gain and loss,” preprint arXiv:1605.04010 (2016).
35.
Y. Lu, Y. Liu, P. Li, Y. Fu, and J. Zhao, Opt. Lett. 41(3), 512 (2016).
http://dx.doi.org/10.1364/OL.41.000512
http://aip.metastore.ingenta.com/content/aip/journal/apl/109/11/10.1063/1.4962639
Loading
/content/aip/journal/apl/109/11/10.1063/1.4962639
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/109/11/10.1063/1.4962639
2016-09-12
2016-09-30

Abstract

Optical structures with balanced loss and gain provide an efficient platform to study the features of light propagation under non-Hermitian parity-time symmetry. Here, we report a feasible design of one-dimensional parity-time symmetric diffraction grating, where the real and imaginary parts of refractive index are separately modulated. Due to the spontaneous breaking of parity-time symmetry at the exceptional point, asymmetric diffractions are observed between a pair of oblique incident light. This asymmetric phenomenon, determined by the modulation direction of the introduced parity-time symmetry, is also polarization-dependent. The coupled-mode theory is implemented to theoretically analyze the polarization dependent asymmetric diffraction, showing consistence with numerical simulations. Our findings may provide a feasible way for manipulating light and instructively inspire the development of diffraction optics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/109/11/1.4962639.html;jsessionid=snYL6Ep3GXw9u0UYuDdp5WhT.x-aip-live-06?itemId=/content/aip/journal/apl/109/11/10.1063/1.4962639&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/109/11/10.1063/1.4962639&pageURL=http://scitation.aip.org/content/aip/journal/apl/109/11/10.1063/1.4962639'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,