Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/109/11/10.1063/1.4962729
1.
D. S. Meyaard, G. B. Lin, J. Cho, E. F. Schubert, H. Shim, S. H. Han, M. H. Kim, C. Sone, and Y. S. Kim, Appl. Phys. Lett. 102(25), 251114 (2013).
http://dx.doi.org/10.1063/1.4811558
2.
J. Piprek, Appl. Phys. Lett. 107(3), 031101 (2015).
http://dx.doi.org/10.1063/1.4927202
3.
Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, Appl. Phys. Lett. 98(18), 181102 (2011).
http://dx.doi.org/10.1063/1.3586773
4.
L. Shterengas, R. Liang, G. Kipshidze, T. Hosoda, G. Belenky, S. S. Bowman, and R. L. Tober, Appl. Phys. Lett. 105(16), 161112 (2014).
http://dx.doi.org/10.1063/1.4900506
5.
J. Piprek, Phys. Status Solidi A 207(10), 2217 (2010).
http://dx.doi.org/10.1002/pssa.201026149
6.
J. Cho, E. F. Schubert, and J. K. Kim, Laser Photonics Rev. 7(3), 408 (2013).
http://dx.doi.org/10.1002/lpor.201200025
7.
L. A. Coldren, S. W. Corzine, and M. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, 2nd ed. ( Wiley, Hoboken, NJ, 2012).
8.
J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, Phys. Rev. Lett. 110(17), 177406 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.177406
9.
K. A. Bulashevich and S. Y. Karpov, Phys. Status Solidi C 5(6), 2066 (2008).
http://dx.doi.org/10.1002/pssc.200778414
10.
H. Li, Bismuth-Containing Compounds ( Springer, New York, 2013).
11.
Z. Batool, K. Hild, T. J. C. Hosea, X. Lu, T. Tiedje, and S. J. Sweeney, J. Appl. Phys. 111(11), 113108 (2012).
http://dx.doi.org/10.1063/1.4728028
12.
D. Steiauf, E. Kioupakis, and C. G. Van de Walle, ACS Photonics 1(8), 643 (2014).
http://dx.doi.org/10.1021/ph500119q
13.
G. Vardar, S. W. Paleg, M. V. Warren, M. Kang, S. Jeon, and R. S. Goldman, Appl. Phys. Lett. 102(4), 042106 (2013).
http://dx.doi.org/10.1063/1.4789369
14.
J. Puustinen, M. Wu, E. Luna, A. Schramm, P. Laukkanen, M. Laitinen, T. Sajavaara, and M. Guina, J. Appl. Phys. 114(24), 243504 (2013).
http://dx.doi.org/10.1063/1.4851036
15.
V. Pacebutas, R. Butkute, B. Cechavicius, J. Kavaliauskas, and A. Krotkus, Thin Solid Films 520(20), 6415 (2012).
http://dx.doi.org/10.1016/j.tsf.2012.06.047
16.
H. Jacobsen, B. Puchala, T. F. Kuech, and D. Morgan, Phys. Rev. B 86(8), 085207 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.085207
17.
G. F. Luo, S. J. Yang, J. C. Li, M. Arjmand, I. Szlufarska, A. S. Brown, T. F. Kuech, and D. Morgan, Phys. Rev. B 92(3), 035415 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.035415
18.
K. Forghani, Y. X. Guan, M. Losurdo, G. F. Luo, D. Morgan, S. E. Babcock, A. S. Brown, L. J. Mawst, and T. F. Kuech, Appl. Phys. Lett. 105(11), 111101 (2014).
http://dx.doi.org/10.1063/1.4895116
19.
G. Kresse and J. Furthmuller, Phys. Rev. B 54(16), 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
20.
G. Kresse and J. Furthmuller, Comp. Mater. Sci. 6(1), 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
21.
A. van de Walle, P. Tiwary, M. de Jong, D. L. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L. Q. Chen, and Z. K. Liu, Calphad 42, 13 (2013).
http://dx.doi.org/10.1016/j.calphad.2013.06.006
22.
H. M. Al-Allak and S. J. Clark, Phys. Rev. B 63(3), 033311 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.033311
23.
A. Janotti, S. H. Wei, and S. B. Zhang, Phys. Rev. B 65(11), 115203 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.115203
24.
H. W. King, J. Mater. Sci. 1, 79 (1966).
http://dx.doi.org/10.1007/BF00549722
25.
B. Cordero, V. Gomez, A. E. Platero-Prats, M. Reves, J. Echeverria, E. Cremades, F. Barragan, and S. Alvarez, Dalton Trans. (21), 2832 (2008).
http://dx.doi.org/10.1039/B801115J
26.
K. Alberi, J. Wu, W. Walukiewicz, K. M. Yu, O. D. Dubon, S. P. Watkins, C. X. Wang, X. Liu, Y. J. Cho, and J. Furdyna, Phys. Rev. B 75(4), 045203 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.045203
27.
I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89(11), 5815 (2001).
http://dx.doi.org/10.1063/1.1368156
28.
W. Huang, K. Oe, G. Feng, and M. Yoshimoto, J. Appl. Phys. 98(5), 053505 (2005).
http://dx.doi.org/10.1063/1.2032618
29.
S. Francoeur, M. J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk, and T. Tiedje, Appl. Phys. Lett. 82(22), 3874 (2003).
http://dx.doi.org/10.1063/1.1581983
30.
K. Alberi, O. D. Dubon, W. Walukiewicz, K. M. Yu, K. Bertulis, and A. Krotkus, Appl. Phys. Lett. 91(5), 051909 (2007).
http://dx.doi.org/10.1063/1.2768312
31.
B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. C. Young, and T. Tiedje, Phys. Rev. Lett. 97(6), 067205 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.067205
32.
D. V. Morgan and R. H. Williams, Physics and Technology of Heterojunction Devices ( Peter Peregrinus Ltd., London, United Kingdom, 1991), p. 241.
33.
M. Usman, C. A. Broderick, Z. Batool, K. Hild, T. J. C. Hosea, S. J. Sweeney, and E. P. O'Reilly, Phys. Rev. B 87(11), 115104 (2013).
http://dx.doi.org/10.1103/PhysRevB.87.115104
34.
A. Baldereschi, S. Baroni, and R. Resta, Phys. Rev. Lett. 61(6), 734 (1988).
http://dx.doi.org/10.1103/PhysRevLett.61.734
http://aip.metastore.ingenta.com/content/aip/journal/apl/109/11/10.1063/1.4962729
Loading
/content/aip/journal/apl/109/11/10.1063/1.4962729
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/109/11/10.1063/1.4962729
2016-09-16
2016-09-30

Abstract

Significant efficiency droop is a major concern for light-emitting diodes and laser diodes operating at high current density. Recent study has suggested that heavily Bi-alloyed GaAs can decrease the non-radiative Auger recombination and therefore alleviate the efficiency droop. Using density functional theory, we studied a newly fabricated quaternary alloy, GaAs PBi, which can host significant amounts of Bi, through calculations of its band gap, spin-orbit splitting, and band offsets with GaAs. We found that the band gap changes of GaAs PBi relative to GaAs are determined mainly by the local structural changes around P and Bi atoms rather than their electronic structure differences. To obtain alloy with lower Auger recombination than GaAs bulk, we identified the necessary constraints on the compositions of P and Bi. Finally, we demonstrated that GaAs/GaAs PBi heterojunctions with potentially low Auger recombination can exhibit small lattice mismatch and large enough band offsets for strong carrier confinement. This work shows that the electronic properties of GaAs PBi are potentially suitable for high-power infrared light-emitting diodes and laser diodes with improved efficiency.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/109/11/1.4962729.html;jsessionid=6BHVhG8NAuzya3dwPNaTppZ9.x-aip-live-06?itemId=/content/aip/journal/apl/109/11/10.1063/1.4962729&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/109/11/10.1063/1.4962729&pageURL=http://scitation.aip.org/content/aip/journal/apl/109/11/10.1063/1.4962729'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,