Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/109/11/10.1063/1.4962730
1.
C. Tao, W. G. Cullen, and E. D. Williams, Science 328, 736 (2010).
http://dx.doi.org/10.1126/science.1186648
2.
V. Tomar, M. R. Gungor, and D. Maroudas, Phys. Rev. Lett. 100, 036106 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.036106
3.
F. Barakat, K. Martens, and O. Pierre-Louis, Phys. Rev. Lett. 109, 056101 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.056101
4.
P. Kuhn, J. Krug, F. Hausser, and A. Voigt, Phys. Rev. Lett. 94, 166105 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.166105
5.
P. Kuhn and J. Krug, in Multiscale Modeling in Epitaxial Growth, ISNM International Series of Numerical Mathematics, edited by A. Voigt ( Birkhäuser Basel, 2005), Vol. 149, pp. 159173.
6.
M. Rusanen, P. Kuhn, and J. Krug, Phys. Rev. B 74, 245423 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.245423
7.
D. Dasgupta, G. I. Sfyris, M. R. Gungor, and D. Maroudas, Appl. Phys. Lett. 100, 141902 (2012).
http://dx.doi.org/10.1063/1.3698360
8.
R. C. Hayward, D. A. Saville, and I. A. Aksay, Nature 404, 56 (2000).
http://dx.doi.org/10.1038/35003530
9.
E. Schaffer, T. Thurn-Albrecht, T. P. Russell, and U. Steiner, Nature 403, 874 (2000).
http://dx.doi.org/10.1038/35002540
10.
T. L. Morkved, M. Lu, A. M. Urbas, E. E. Ehrichs, H. M. Jaeger, P. Mansky, and T. P. Russell, Science 273, 931 (1996).
http://dx.doi.org/10.1126/science.273.5277.931
11.
O. Pierre-Louis and T. L. Einstein, Phys. Rev. B 62, 13697 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.13697
12.
H. Mehl, O. Biham, O. Millo, and M. Karimi, Phys. Rev. B 61, 4975 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.4975
13.
S. V. Khare, N. C. Bartelt, and T. L. Einstein, Phys. Rev. Lett. 75, 2148 (1995);
http://dx.doi.org/10.1103/PhysRevLett.75.2148
S. V. Khare and T. L. Einstein, Phys. Rev. B 54, 11752 (1996);
http://dx.doi.org/10.1103/PhysRevB.54.11752
S. V. Khare and T. L. Einstein, Phys. Rev. B 57, 4782 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.4782
14.
D. Dasgupta and D. Maroudas, Appl. Phys. Lett. 103, 181602 (2013).
http://dx.doi.org/10.1063/1.4827304
15.
A. Kumar, D. Dasgupta, C. Dimitrakopoulos, and D. Maroudas, Appl. Phys. Lett. 108, 193109 (2016).
http://dx.doi.org/10.1063/1.4949333
16.
D. Dasgupta, G. I. Sfyris, and D. Maroudas, Surf. Sci. 618, L1 (2013).
http://dx.doi.org/10.1016/j.susc.2013.07.015
17.
J. Krug and H. T. Dobbs, Phys. Rev. Lett. 73, 1947 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.1947
18.
D. Maroudas, Appl. Phys. Lett. 67, 798 (1995).
http://dx.doi.org/10.1063/1.115471
19.
M. R. Gungor and D. Maroudas, Appl. Phys. Lett. 72, 3452 (1998).
http://dx.doi.org/10.1063/1.121663
20.
D. Maroudas, Surf. Sci. Rep. 66, 299 (2011).
http://dx.doi.org/10.1016/j.surfrep.2011.05.001
21.
Y. Huang, X. Duan, Q. Wei, and C. M. Lieber, Science 291, 630 (2001).
http://dx.doi.org/10.1126/science.291.5504.630
http://aip.metastore.ingenta.com/content/aip/journal/apl/109/11/10.1063/1.4962730
Loading
/content/aip/journal/apl/109/11/10.1063/1.4962730
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/109/11/10.1063/1.4962730
2016-09-15
2016-09-27

Abstract

Physical nanopatterning based on a precise control of macroscopic forcing is an essential tool of nanoscale science and technology. Using an externally applied electric field as the macroscopic force, we report here a computational study on the formation of surface nanopatterns consisting of single-layer homoepitaxial islands as a result of a morphological instability that can occur under edge electromigration conditions on the straight edge of a single-layer nanowire grown epitaxially on a crystalline substrate. Direct dynamical simulations based on a model that has been validated experimentally for the Ag/Ag system show that the current-induced nanowire edge instability causes the breakup of the nanowire and leads to the formation of uniformly distributed islands, arranged in linear or V-shaped arrays, which are uniformly sized with nanoscale dimensions. The simulation results are supported by linear stability theory and demonstrate that the geometrical features of the island patterns and the island sizes can be controlled precisely by controlling the electric field direction with respect to the nanowire axis and the electric field strength. Our findings have important implications for developing physical nanopatterning approaches toward enabling future nanofabrication technologies.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/109/11/1.4962730.html;jsessionid=exsOfP1MDHTxgqCMLaYacZm1.x-aip-live-02?itemId=/content/aip/journal/apl/109/11/10.1063/1.4962730&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/109/11/10.1063/1.4962730&pageURL=http://scitation.aip.org/content/aip/journal/apl/109/11/10.1063/1.4962730'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,