Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/109/11/10.1063/1.4962731
1.
S. Link and M. A. El-Sayed, J. Phys. Chem. B 103, 8410 (1999).
http://dx.doi.org/10.1021/jp9917648
2.
Y. Liu and C. Z. Huang, Nanoscale 5, 7458 (2013).
http://dx.doi.org/10.1039/c3nr01952g
3.
E. Martinsson, M. A. Otte, M. M. Shahjamali, B. Sepulveda, and D. Aili, J. Phys. Chem. C 118, 24680 (2014).
http://dx.doi.org/10.1021/jp5084086
4.
W. Shi, Y. Sahoo, M. T. Swihart, and P. N. Prasad, Langmuir 21, 1610 (2005).
http://dx.doi.org/10.1021/la047628y
5.
E. Cottancin, G. Celep, J. Lermé, M. Pellarin, J. R. Huntzinger, J. L. Vialle, and M. Broyer, Theor. Chem. Acc. 116, 514 (2006).
http://dx.doi.org/10.1007/s00214-006-0089-1
6.
P. N. Njoki, I.-I. S. Lim, D. Mott, H.-Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo, and C.-J. Zhong, J. Phys. Chem. C 111, 14664 (2007).
http://dx.doi.org/10.1021/jp074902z
7.
J. Olson, S. Dominguez-Medina, A. Hoggard, L.-Y. Wang, W.-S. Chang, and S. Link, Chem. Soc. Rev. 44, 40 (2015).
http://dx.doi.org/10.1039/C4CS00131A
8.
V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, and S. A. Maier, Chem. Rev. 111, 3888 (2011).
http://dx.doi.org/10.1021/cr1002672
9.
S. Szunerits and R. Boukherroub, Chem. Commun. 48, 8999 (2012).
http://dx.doi.org/10.1039/c2cc33266c
10.
S. Unser, I. Bruzas, J. He, and L. Sagle, Sensors 15, 15684 (2015).
http://dx.doi.org/10.3390/s150715684
11.
J. L. West and N. J. Halas, Annu. Rev. Biomed. Eng. 5, 285 (2003).
http://dx.doi.org/10.1146/annurev.bioeng.5.011303.120723
12.
P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, Acc. Chem. Res. 41, 1578 (2008).
http://dx.doi.org/10.1021/ar7002804
13.
O. Pluchery, E. Lacaze, M. Simion, M. Miu, A. Bragaru, and A. Radoi, in Semiconductor Conference (CAS) 2010 International (2010), pp. 159162.
14.
C. Humbert, O. Pluchery, E. Lacaze, A. Tadjeddine, and B. Busson, Gold Bull. 46, 299 (2013).
http://dx.doi.org/10.1007/s13404-013-0126-5
15.
N. Arai, H. Tsuji, K. Ueno, T. Matsumoto, Y. Gotoh, K. Adachi, H. Kotaki, and J. Ishikawa, Surf. Coat. Technol. 196, 44 (2005).
http://dx.doi.org/10.1016/j.surfcoat.2004.08.090
16.
L. Dalstein, M. Ben Haddada, G. Barbillon, C. Humbert, A. Tadjeddine, S. Boujday, and B. Busson, J. Phys. Chem. C 119, 17146 (2015).
http://dx.doi.org/10.1021/acs.jpcc.5b03601
17.
G. Cacciato, M. Bayle, A. Pugliara, C. Bonafos, M. Zimbone, V. Privitera, M. G. Grimaldi, and R. Carles, Nanoscale 7, 13468 (2015).
http://dx.doi.org/10.1039/C5NR02406D
18.
B. Luk'yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, Nat. Mater. 9, 707 (2010).
http://dx.doi.org/10.1038/nmat2810
19.
A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.2257
20.
E. S. Kooij, H. Wormeester, E. A. M. Brouwer, E. van Vroonhoven, A. van Silfhout, and B. Poelsema, Langmuir 18, 4401 (2002).
http://dx.doi.org/10.1021/la0256127
21.
V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, Chem. Soc. Rev. 37, 1792 (2008).
http://dx.doi.org/10.1039/b711486a
22.
J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson, and G. C. Schatz, Acc. Chem. Res. 41, 1710 (2008).
http://dx.doi.org/10.1021/ar800028j
23.
U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters ( Springer, Berlin, Heidelberg, 1995).
24.
M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. ( Cambridge University Press, 1999).
25.
C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles ( Wiley-VCH Verlag GmbH, 1998).
26.
C. Louis and O. Pluchery, Gold Nanoparticles for Physics, Chemistry and Biology ( Imperial College Press, 2012).
27.
P. G. Etchegoin, E. C. L. Ru, and M. Meyer, J. Chem. Phys. 125, 164705 (2006).
http://dx.doi.org/10.1063/1.2360270
28.
P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
http://dx.doi.org/10.1103/PhysRevB.6.4370
29.
X. Liu, M. Atwater, J. Wang, and Q. Huo, Colloids Surf., B 58, 3 (2007).
http://dx.doi.org/10.1016/j.colsurfb.2006.08.005
30.
M. Valamanesh, Y. Borensztein, C. Langlois, and E. Lacaze, J. Phys. Chem. C 115, 2914 (2011).
http://dx.doi.org/10.1021/jp1056495
31.
M. A. Garcia, J. de la Venta, P. Crespo, J. LLopis, S. Penadés, A. Fernández, and A. Hernando, Phys. Rev. B 72, 241403 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.241403
32.
B. N. Khlebtsov and N. G. Khlebtsov, J. Phys. Chem. C 111, 11516 (2007).
http://dx.doi.org/10.1021/jp072707e
33.
C. Noguez, J. Phys. Chem. C 111, 3806 (2007).
http://dx.doi.org/10.1021/jp066539m
34.
J. C. M. Garnett, Philos. Trans. R. Soc. Lond. Math. Phys. Eng. Sci. 203, 385 (1904).
http://dx.doi.org/10.1098/rsta.1904.0024
35.
S. Berthier, J. Phys. I France 4, 303318 (1994).
http://dx.doi.org/10.1051/jp1:1994139
36.
T. Yamaguchi, S. Yoshida, and A. Kinbara, Thin Solid Films 21, 173 (1974).
http://dx.doi.org/10.1016/0040-6090(74)90099-6
37.
D. Bedeaux and J. Vlieger, Optical Properties of Surfaces ( World Scientific, 2004).
38.
J. Toudert, L. Simonot, S. Camelio, and D. Babonneau, Phys. Rev. B 86, 45415 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.045415
39.
Y. Battie, A. En Naciri, W. Chamorro, and D. Horwat, J. Phys. Chem. C 118, 4899 (2014).
http://dx.doi.org/10.1021/jp4119343
40.
O. Pluchery and J.-M. Costantini, J. Phys. Appl. Phys. 45, 495101 (2012).
http://dx.doi.org/10.1088/0022-3727/45/49/495101
41.
D. W. Lynch and W. R. Hunter, in Handbook of Optical Constants of Solids ( Academic Press, Burlington, 1997), pp. 275367.
42.
J. Turkevich, P. C. Stevenson, and J. Hillier, Discuss. Faraday Soc. 11, 55 (1951).
http://dx.doi.org/10.1039/df9511100055
43.
K. C. Grabar, R. G. Freeman, M. B. Hommer, and M. J. Natan, Anal. Chem. 67, 735 (1995).
http://dx.doi.org/10.1021/ac00100a008
44.
K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, Nano Lett. 3, 1087 (2003).
http://dx.doi.org/10.1021/nl034197f
45.
A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, Nano Lett. 9, 1651 (2009).
http://dx.doi.org/10.1021/nl900034v
46.
Y. J. Chabal, Surf. Sci. Rep. 8, 211 (1988).
http://dx.doi.org/10.1016/0167-5729(88)90011-8
47.
A. Debelle, L. Thomé, D. Dompoint, A. Boulle, F. Garrido, J. Jagielski, and D. Chaussende, J. Phys. Appl. Phys. 43, 455408 (2010).
http://dx.doi.org/10.1088/0022-3727/43/45/455408
http://aip.metastore.ingenta.com/content/aip/journal/apl/109/11/10.1063/1.4962731
Loading
/content/aip/journal/apl/109/11/10.1063/1.4962731
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/109/11/10.1063/1.4962731
2016-09-15
2016-09-30

Abstract

Gold nanoparticles (AuNPs) are known for their localized surface plasmon resonance (LSPR) that can be measured with UV-visible spectroscopy. AuNPs are often deposited on silicon substrates for various applications, and the LSPR is measured in reflection. In this case, optical spectra are measured by surface differential reflectance spectroscopy (SDRS) and the absorbance exhibits a negative peak. This article studies both experimentally and theoretically on the single layers of 16 nm diameter spherical gold nanoparticles (AuNPs) grafted on silicon. The morphology and surface density of AuNPs were investigated by atomic force microscopy (AFM). The plasmon response in transmission on the glass substrate and in reflection on the silicon substrate is described by an analytical model based on the Fresnel equations and the Maxwell-Garnett effective medium theory (FMG). The FMG model shows a strong dependence to the incidence angle of the light. At low incident angles, the peak appears negatively with a shallow intensity, and at angles above 30°, the usual positive shape of the plasmon is retrieved. The relevance of the FMG model is compared to the Mie theory within the dipolar approximation. We conclude that no Fano effect is responsible for this derivative shape. An easy-to-use formula is derived that agrees with our experimental data.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/109/11/1.4962731.html;jsessionid=5Y2coDlUbVdFVpVt8fItDz1L.x-aip-live-02?itemId=/content/aip/journal/apl/109/11/10.1063/1.4962731&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/109/11/10.1063/1.4962731&pageURL=http://scitation.aip.org/content/aip/journal/apl/109/11/10.1063/1.4962731'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,