Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/109/11/10.1063/1.4962896
1.
M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and L. C. Hollenberg, Phys. Rep. 528, 1 (2013).
http://dx.doi.org/10.1016/j.physrep.2013.02.001
2.
L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, Rep. Prog. Phys. 77, 056503 (2014).
http://dx.doi.org/10.1088/0034-4885/77/5/056503
3.
G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger et al., Nature 455, 648 (2008).
http://dx.doi.org/10.1038/nature07278
4.
R. Beams, D. Smith, T. W. Johnson, S.-H. Oh, L. Novotny, and A. N. Vamivakas, Nano Lett. 13, 3807 (2013).
http://dx.doi.org/10.1021/nl401791v
5.
J.-P. Tetienne, T. Hingant, J.-V. Kim, L. H. Diez, J.-P. Adam, K. Garcia, J.-F. Roch, S. Rohart, A. Thiaville, D. Ravelosona et al., Science 344, 1366 (2014).
http://dx.doi.org/10.1126/science.1250113
6.
P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, J. H. Shim et al., Nano Lett. 13, 2738 (2013).
http://dx.doi.org/10.1021/nl401216y
7.
Y.-K. Tzeng, P.-C. Tsai, H.-Y. Liu, O. Y. Chen, H. Hsu, F.-G. Yee, M.-S. Chang, and H.-C. Chang, Nano Lett. 15, 3945 (2015).
http://dx.doi.org/10.1021/acs.nanolett.5b00836
8.
G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, Nature 500, 54 (2013).
http://dx.doi.org/10.1038/nature12373
9.
J. F. Barry, M. J. Turner, J. M. Schloss, D. R. Glenn, Y. Song, M. D. Lukin, H. Park, and R. L. Walsworth, preprint arXiv:1602.01056 [quant-ph] (2016).
10.
D. L. Sage, K. Arai, D. R. Glenn, S. J. DeVience, L. M. Pham, L. Rahn-Lee, M. D. Lukin, A. Yacoby, A. Komeili, and R. L. Walsworth, Nature 496, 486489 (2013).
http://dx.doi.org/10.1038/nature12072
11.
A. Laraoui, H. Aycock-Rizzo, Y. Gao, X. Lu, E. Riedo, and C. A. Meriles, Nat. Commun. 6, 8954 (2015).
http://dx.doi.org/10.1038/ncomms9954
12.
J.-P. Tetienne, A. Lombard, D. A. Simpson, C. Ritchie, J. Lu, P. Mulvaney, and L. C. Hollenberg, Nano Lett. 16, 326 (2016).
http://dx.doi.org/10.1021/acs.nanolett.5b03877
13.
A. Drezet, Y. Sonnefraud, A. Cuche, O. Mollet, M. Berthel, and S. Huant, Micron 70, 55 (2015).
http://dx.doi.org/10.1016/j.micron.2014.12.004
14.
N. Rotenberg and L. Kuipers, Nat. Photonics 8, 919 (2014).
http://dx.doi.org/10.1038/nphoton.2014.285
15.
K. A. Twedt, J. Zou, M. Davanco, K. Srininvasan, J. J. McClell, and V. A. Aksyuk, Nat. Photonics 10, 35 (2016).
http://dx.doi.org/10.1038/nphoton.2015.248
16.
P. Appel, E. Neu, M. Ganzhorn, A. Barfuss, M. Batzer, M. Gratz, A. Tschope, and P. Maletinsky, Rev. Sci. Instrum. 87, 063703 (2016).
http://dx.doi.org/10.1063/1.4952953
17.
B. J. Maertz, A. P. Wijnheijmer, G. D. Fuchs, M. E. Nowakowski, and D. D. Awchalom, Appl. Phys. Lett. 96, 092504 (2010).
http://dx.doi.org/10.1063/1.3337096
18.
L. M. Pham, D. L. Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park et al., New J. Phys. 13, 045021 (2011).
http://dx.doi.org/10.1088/1367-2630/13/4/045021
19.
L. T. Hall, G. C. G. Beart, E. A. Thomas, D. A. Simpson, L. P. McGuinness, J. H. Cole, J. H. Manton, R. E. Scholten, F. Jelezko, J. Wrachtrup et al., Sci. Rep. 2, 401 (2012).
http://dx.doi.org/10.1038/srep00401
20.
D. A. Simpson, J.-P. Tetienne, J. McCoey, K. Ganesan, S. P. Liam, T. Hall, R. E. Scholten, and L. C. L. Hollenberg, Sci. Rep. 6, 22797 (2016).
http://dx.doi.org/10.1038/srep22797
21.
D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schonle, J. G. Rarity, J. L. O'Brien, S. W. Hell et al., Adv. Mater. 24, OP309 (2012).
http://dx.doi.org/10.1002/adma.201203033
22.
E. H. Chen, O. Gaathon, M. E. Trusheim, and D. Englund, Nano Lett. 13, 2073 (2013).
http://dx.doi.org/10.1021/nl400346k
23.
M. Pfender, N. Aslam, G. Waldherr, P. Neumann, and J. Wrachtrup, Proc. Natl. Acad. Sci. 111, 14669 (2014).
http://dx.doi.org/10.1073/pnas.1404907111
24.
P. C. Maurer, J. R. Maze, P. L. Stanwix, L. Jiang, A. V. Gorshkov, A. A. Zibrov, B. Harke, J. S. Hodges, A. S. Zibrov, A. Yacoby et al., Nat. Phys. 6, 912 (2010).
http://dx.doi.org/10.1038/nphys1774
25.
K. Y. Han, S. K. Kim, C. Eggeling, and S. W. Hell, Nano Lett. 10, 3199 (2010).
http://dx.doi.org/10.1021/nl102156m
26.
X. Chen, C. Zou, Z. Gong, C. Dong, G. Guo, and F. Sun, Light: Sci. Appl. 4, e230 (2015).
http://dx.doi.org/10.1038/lsa.2015.3
27.
X. Yang, Y.-K. Tzeng, Z. Zhu, Z. Huang, X. Chen, Y. Liu, H.-C. Chang, L. Huang, W.-D. Li, and P. Xi, RSC Adv. 4, 11305 (2014).
http://dx.doi.org/10.1039/c3ra47240j
28.
M. W. Doherty, V. V. Struzhkin, D. A. Simpson, L. P. McGuinness, Y. Meng, A. Stacey, T. J. Karle, R. J. Hemley, N. B. Manson, L. C. L. Hollenberg et al., Phys. Rev. Lett. 112, 047601 (2014).
http://dx.doi.org/10.1103/PhysRevLett.112.047601
29.
N. Aslam, G. Waldherr, P. Neumann, F. Jelezko, and J. Wrachtrup, New J. Phys. 15, 013064 (2013).
http://dx.doi.org/10.1088/1367-2630/15/1/013064
30.
X.-D. Chen, C.-L. Zou, F.-W. Sun, and G.-C. Guo, Appl. Phys. Lett. 103, 013112 (2013).
http://dx.doi.org/10.1063/1.4813120
31.
X.-D. Chen, L.-M. Zhou, C.-L. Zou, C.-C. Li, Y. Dong, F.-W. Sun, and G.-C. Guo, Phys. Rev. B 92, 104301 (2015).
http://dx.doi.org/10.1103/PhysRevB.92.104301
32.
P. Siyushev, H. Pinto, M. Vörös, A. Gali, F. Jelezko, and J. Wrachtrup, Phys. Rev. Lett. 110, 167402 (2013).
http://dx.doi.org/10.1103/PhysRevLett.110.167402
33.
Y. Doi, T. Fukui, H. Kato, T. Makino, S. Yamasaki, T. Tashima, H. Morishita, S. Miwa, F. Jelezko, Y. Suzuki et al., Phys. Rev. B 93, 081203 (2016).
http://dx.doi.org/10.1103/PhysRevB.93.081203
34.
E. E. Kleinsasser, M. M. Stanfield, J. K. Q. Banks, Z. Zhu, W.-D. Li, V. M. Acosta, H. Watanabe, K. M. Itoh, and K.-M. C. Fu, Appl. Phys. Lett. 108, 202401 (2016).
http://dx.doi.org/10.1063/1.4949357
35.
C. Santori, P. E. Barclay, K.-M. C. Fu, and R. G. Beausoleil, Phys. Rev. B 79, 125313 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.125313
36.
B. Grotz, M. V. Hauf, M. Dankerl, B. Naydenov, S. Pezzagna, J. Meijer, F. Jelezko, J. Wrachtrup, M. Stutzman, F. Reinhard et al., Nat. Commun. 3, 729 (2012).
http://dx.doi.org/10.1038/ncomms1729
37.
A. T. Collins, J. Phys.: Condens. Matter 14, 3743 (2002).
http://dx.doi.org/10.1088/0953-8984/14/14/307
38.
Z. Mi, Y. Zhang, S. K. Vanga, C.-B. Chen, H. Q. Tan, F. Watt, X. Liu, and A. A. Brttiol, Nat. Commun. 6, 8832 (2015).
http://dx.doi.org/10.1038/ncomms9832
39.
J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, Nucl. Instrum. Methods 268, 1818 (2010).
http://dx.doi.org/10.1016/j.nimb.2010.02.091
40.
A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, Phys. Rev. Lett. 106, 096801 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.096801
41.
M. Geiselmann, R. Marty, J. Renger, F. J. G. de Abajo, and R. Quidant, Nano Lett. 14, 1520 (2014).
http://dx.doi.org/10.1021/nl4047587
http://aip.metastore.ingenta.com/content/aip/journal/apl/109/11/10.1063/1.4962896
Loading
/content/aip/journal/apl/109/11/10.1063/1.4962896
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/109/11/10.1063/1.4962896
2016-09-16
2016-09-26

Abstract

We demonstrate optical far-field super-resolution microscopy using an array of nitrogen vacancy centers in bulk diamond as near-field optical probes. The local optical field, which transmits through the nanostructures on the diamond surface, is measured by detecting the charge state conversion of the nitrogen vacancy center. Locating the nitrogen vacancy center with a spatial resolution of 6.1 nm is realized with charge state depletion nanoscopy. The nanostructures on the surface of a diamond are then imaged with a resolution below the optical diffraction limit. The results offer an approach to build a general-purpose optical super-resolution microscopy technique and a convenient platform for high spatial resolution quantum sensing with nitrogen vacancy centers.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/109/11/1.4962896.html;jsessionid=9BLmXBi8QTJ9834jb8yoiTrL.x-aip-live-03?itemId=/content/aip/journal/apl/109/11/10.1063/1.4962896&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/109/11/10.1063/1.4962896&pageURL=http://scitation.aip.org/content/aip/journal/apl/109/11/10.1063/1.4962896'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,