Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/109/11/10.1063/1.4962904
1.
Z. L. Wang and J. Song, Science 312, 242 (2006).
http://dx.doi.org/10.1126/science.1124005
2.
Y. Qin, X. Wang, and Z. L. Wang, Nature 451, 809 (2008).
http://dx.doi.org/10.1038/nature06601
3.
X. Wang, J. Song, J. Liu, and Z. L. Wang, Science 316, 102 (2007).
http://dx.doi.org/10.1126/science.1139366
4.
R. Yang, Y. Qin, L. Dai, and Z. L. Wang, Nat. Nanotechnol. 4, 34 (2009).
http://dx.doi.org/10.1038/nnano.2008.314
5.
M. A. Schubert, S. Senz, M. Alexe, D. Hesse, and U. Gösele, Appl. Phys. Lett. 92, 122904 (2008).
http://dx.doi.org/10.1063/1.2903114
6.
D. Geng, A. Pook, and X. Wang, Nano Energy 2, 1225 (2013).
http://dx.doi.org/10.1016/j.nanoen.2013.05.008
7.
G. C. Yoon, K. S. Shin, M. K. Gupta, K. Y. Lee, J. H. Lee, Z. L. Wang, and S. W. Kim, Nano Energy 12, 547 (2015).
http://dx.doi.org/10.1016/j.nanoen.2015.01.028
8.
W. S. Su, Y. F. Chen, C. L. Hsiao, and L. W. Tu, Appl. Phys. Lett. 90, 063110 (2007).
http://dx.doi.org/10.1063/1.2472539
9.
M. Minary-Jolandan, R. A. Bernal, I. Kuljanishvili, V. Parpoil, and H. D. Espinosa, Nano Lett. 12, 970 (2012).
http://dx.doi.org/10.1021/nl204043y
10.
W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone, and Z. L. Wang, Nature 514, 470 (2014).
http://dx.doi.org/10.1038/nature13792
11.
W. Liu, Y. Zhou, A. Zhang, Y. Zhang, and Z. L. Wang, Appl. Phys. Lett. 108, 181603 (2016).
http://dx.doi.org/10.1063/1.4948660
12.
Y. Qi, N. T. Jafferis, K. Lyons, C. M. Lee, H. Ahmad, and M. C. McAlpine, Nano Lett. 10, 524 (2010).
http://dx.doi.org/10.1021/nl903377u
13.
S. Xu, B. J. Hansen, and Z. L. Wang, Nat. Commun. 1, 93 (2010).
http://dx.doi.org/10.1038/ncomms1098
14.
C. Chang, V. H. Tran, J. Wang, Y. K. Fuh, and L. Lin, Nano Lett. 10, 726 (2010).
http://dx.doi.org/10.1021/nl9040719
15.
K. Y. Lee, D. Kim, J. H. Lee, T. Y. Kim, M. K. Gupta, and S. W. Kim, Adv. Funct. Mater. 24, 37 (2014).
http://dx.doi.org/10.1002/adfm.201301379
16.
Y. Hu, L. Lin, Y. Zhang, and Z. L. Wang, Adv. Mater. 24, 110 (2012).
http://dx.doi.org/10.1002/adma.201103727
17.
L. Gu, N. Cui, L. Cheng, Q. Xu, S. Bai, M. Yuan, W. Wu, J. Liu, Y. Zhao, F. Ma, Y. Qin, and Z. L. Wang, Nano Lett. 13, 91 (2013).
http://dx.doi.org/10.1021/nl303539c
18.
K. Y. Lee, M. K. Gupta, and S. W. Kim, Nano Energy 14, 139 (2015).
http://dx.doi.org/10.1016/j.nanoen.2014.11.009
19.
S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, and Z. L. Wang, Nat. Nanotechnol. 5, 366 (2010).
http://dx.doi.org/10.1038/nnano.2010.46
20.
H. S. Lee, J. Chung, G. T. Hwang, C. K. Jeong, Y. Jung, J. H. Kwak, H. Kang, M. Byun, W. D. Kim, S. Hur, S. H. Oh, and K. J. Lee, Adv. Funct. Mater. 24, 6914 (2014).
http://dx.doi.org/10.1002/adfm.201402270
21.
C. Lang, J. Fang, H. Shao, X. Ding, and T. Lin, Nat. Commun. 7, 11108 (2016).
http://dx.doi.org/10.1038/ncomms11108
22.
Z. L. Wang and X. Wang, Nano Energy 14, 1 (2015).
http://dx.doi.org/10.1016/j.nanoen.2015.01.011
23.
V. Kotipalli, Z. Gong, P. Pathak, T. Zhang, Y. He, S. Yadav, and L. Que, Appl. Phys. Lett. 97, 124102 (2010).
http://dx.doi.org/10.1063/1.3491843
24.
Y. Gao and Z. L. Wang, Nano Lett. 7, 2499 (2007).
http://dx.doi.org/10.1021/nl071310j
25.
S. Plimpton, J. Comput. Phys. 117, 1 (1995).
http://dx.doi.org/10.1006/jcph.1995.1039
26.
J. Nord, K. Albe, P. Erhart, and K. Nordlund, J. Phys.: Condens. Matter 15, 5649 (2003).
http://dx.doi.org/10.1088/0953-8984/15/32/324
27.
S. Wang, Z. Fan, R. S. Koster, C. Fang, M. A. V. Huis, A. O. Yalcin, F. D. Tichelaar, H. W. Zandbergen, and T. J. H. Vlugt, J. Phys. Chem. C 118, 11050 (2014).
http://dx.doi.org/10.1021/jp411308z
28.
L. Lindsay and D. A. Broido, Phys. Rev. B 81, 205441 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.205441
29.
S. Nosé, J. Chem. Phys. 81, 511 (1984).
http://dx.doi.org/10.1063/1.447334
30.
W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
31.
W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14, 33 (1996).
http://dx.doi.org/10.1016/0263-7855(96)00018-5
32.
J. Lee, V. Varshney, A. K. Roy, J. B. Ferguson, and B. L. Farmer, Nano Lett. 12, 3491 (2012).
http://dx.doi.org/10.1021/nl301006y
33.
Y. Y. Liu, W. X. Zhou, L. M. Tang, and K. Q. Chen, Appl. Phys. Lett. 105, 203111 (2014).
http://dx.doi.org/10.1063/1.4902427
34.
Y. Y. Liu, W. X. Zhou, and K. Q. Chen, Sci. Rep. 5, 17525 (2015).
http://dx.doi.org/10.1038/srep17525
35.
R. Agrawal and H. D. Espinosa, Nano Lett. 11, 786 (2011).
http://dx.doi.org/10.1021/nl104004d
36.
U. Guler, J. C. Ndukaife, G. V. Naik, A. G. A. Nnanna, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, Nano Lett. 13, 6078 (2013).
http://dx.doi.org/10.1021/nl4033457
37.
J. B. Herzog, M. W. Knight, and D. Natelson, Nano Lett. 14, 499 (2014).
http://dx.doi.org/10.1021/nl403510u
38.
W. Koshibae and N. Nagaosa, Nat. Commun. 5, 5148 (2014).
http://dx.doi.org/10.1038/ncomms6148
39.
J. Dong and J. I. Zink, ACS Nano 8, 5199 (2014).
http://dx.doi.org/10.1021/nn501250e
40.
X. Zhu, W. Feng, J. Chang, Y. W. Tan, J. Li, M. Chen, Y. Sun, and F. Li, Nat. Commun. 7, 10437 (2016).
http://dx.doi.org/10.1038/ncomms10437
41.
Z. Qian, F. Liu, Y. Hui, S. Kar, and M. Rinaldi, Nano Lett. 15, 4599 (2015).
http://dx.doi.org/10.1021/acs.nanolett.5b01208
http://aip.metastore.ingenta.com/content/aip/journal/apl/109/11/10.1063/1.4962904
Loading
/content/aip/journal/apl/109/11/10.1063/1.4962904
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/109/11/10.1063/1.4962904
2016-09-15
2016-09-24

Abstract

Piezoelectricity has proved itself a promising mechanism for energy conversion and signal sensing by taking advantage of its ability to convert mechanical energy into electricity. Here, we demonstrate that the piezoelectricity in free-standing non-centrosymmetric nanowires can also be triggered directly by heat to produce electricity. The feasibility of the idea is first analyzed by the dynamic theory of crystal lattices and then confirmed by molecular dynamics simulations. The most salient point is that the heat-induced voltage drop across the cross section of the free-standing nanowires alternates periodically with the vibration of the nanowire. Moreover, the electric potential induced by heat here (as large as 0.34 V) is proved to be comparable with the previously reported potentials induced by mechanical energy, and the maximum value can be tuned by controlling the size of the nanowire and the applied heat.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/109/11/1.4962904.html;jsessionid=3-P6_UdZ9MM3nFW9yIaPGy1J.x-aip-live-02?itemId=/content/aip/journal/apl/109/11/10.1063/1.4962904&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/109/11/10.1063/1.4962904&pageURL=http://scitation.aip.org/content/aip/journal/apl/109/11/10.1063/1.4962904'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,