Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
A. K. Geim, Science 324, 15301534 (2009).
T. O. Wehling, K. S. Novoselov, S. V. Morozov, E. E. Vdovin, M. I. Katsnelson, A. K. Geim, and A. I. Lichtenstein, Nano Lett. 8, 173177 (2008).
F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Nat. Mater. 6, 652655 (2007).
G. Chen, T. M. Paronyan, and A. R. Harutyunyan, Appl. Phys. Lett. 101, 053119 (2012).
J. Sun, M. Muruganathan, and H. Mizuta, Sci. Adv. 2, e1501518 (2016).
O. Leenaerts, B. Partoens, and F. M. Peeters, Phys. Rev. B 77, 125416 (2008).
S. S. Varghese, S. Lonkar, K. K. Singh, S. Swaminathan, and A. Abdala, Sens. Actuators, B 218, 160183 (2015).
T. Wang, D. Huang, Z. Yang, S. Xu, G. He, X. Li, N. Hu, G. Yin, D. He, and L. Zhang, Nano-Micro Lett. 8, 95119 (2016).
See for the European Union NO2 Standards (last accessed August 24, 2016).
See for NO2 health effects and standards in the United States (last accessed August 24, 2016).
Semiconductor Gas Sensors, edited by R. Jaaniso and O. K. Tan ( Woodhead Publishing-Elsevier, Cambridge, 2013), p. 576.
A. Cagliani, D. M. A. Mackenzie, L. K. Tschammer, F. Pizzocchero, K. Almdal, and P. Bøggild, Nano Res. 7, 743754 (2014).
J. Eriksson, D. Puglisi, Y. H. Kang, R. Yakimova, and A. Lloyd Spetz, Physica B 439, 105108 (2014).
A. Berholts, T. Kahro, A. Floren, H. Alles, and R. Jaaniso, Appl. Phys. Lett. 105, 163111 (2014).
M. Kodu, T. Avarmaa, A. Floren, and R. Jaaniso, J. Eur. Ceram. Soc. 33, 23352340 (2013).
A. C. Ferrari, Solid State Commun. 143, 4757 (2007).
Y.-C. Yeo, T.-J. King, and C. Hu, J. Appl. Phys. 92, 72667271 (2002).
S. Sayan, R. A. Bartynski, X. Zhao, E. P. Gusev, D. Vanderbilt, M. Croft, M. Banaszak Holl, and E. Garfunkel, Phys. Status Solidi B 241, 22462252 (2004).
S. Zhuiykov, Electrochemistry of Zirconia Gas Sensors ( CRC Press, Boca Raton, 2007), p. 272.
A. M. Ferraria, A. P. Carapeto, and A. M. Botelho de Rego, Vacuum 86, 19881991 (2012).
Y. Han, R. Lupitskyy, T.-M. Chou, C. M. Stafford, H. Du, and S. Sukhishvili, Anal. Chem. 83, 58735880 (2011).
U. K. Barik, S. Srinivasan, C. L. Nagendra, and A. Subrahmanyam, Thin Solid Films 429, 129134 (2003).
E. H. Martins Ferreira, M. V. O. Moutinho, F. Stavale, M. M. Lucchese, R. B. Capaz, C. A. Achete, and A. Jorio, Phys. Rev. B 82, 125429 (2010).
Pulsed Laser Deposition of Thin Films: Application-Led Growth of Functional Materials, edited by R. Eason ( Wiley-Interscience, Hoboken, 2006), p. 682.
C. Ö. Girit, J. C. Meyer, R. Erni, M. D. Rossell, C. Kisielowski, L. Yang, C.-H. Park, M. F. Crommie, M. L. Cohen, S. G. Louie, and A. Zettl, Science 323, 17051708 (2009).
J. Dai, J. Yuan, and P. Giannozzi, Appl. Phys. Lett. 95, 232105 (2009).
Y.-H. Zhang, Y.-B. Chen, K.-G. Zhou, C.-H. Liu, J. Zeng, H.-L. Zhang, and Y. Peng, Nanotechnology 20, 185504 (2009).
H. Wang, Q. Wang, Y. Cheng, K. Li, Y. Yao, Q. Zhang, C. Dong, P. Wang, U. Schwingenschlögl, W. Yang, and X. X. Zhang, Nano Lett. 12, 141144 (2012).

Data & Media loading...


Article metrics loading...



Graphene as a single-atomic-layer material is fully exposed to environmental factors and has therefore a great potential for the creation of sensitive gas sensors. However, in order to realize this potential for different polluting gases, graphene has to be functionalized—adsorption centers of different types and with high affinity to target gases have to be created at its surface. In the present work, the modification of graphene by small amounts of laser-ablated materials is introduced for this purpose as a versatile and precise tool. The approach has been demonstrated with two very different materials chosen for pulsed laser deposition (PLD)—a metal (Ag) and a dielectric oxide (ZrO). It was shown that the gas response and its recovery rate can be significantly enhanced by choosing the PLD target material and deposition conditions. The response to NO gas in air was amplified up to 40 times in the case of PLD-modified graphene, in comparison with pristine graphene, and it reached 7%–8% at 40 ppb of NO and 20%–30% at 1 ppm of NO. The PLD process was conducted in a background gas (5 × 10−2 mbar oxygen or nitrogen) and resulted in the atomic areal densities of the deposited materials of about 1015 cm−2. The ultimate level of NO detection in air, as extrapolated from the experimental data obtained at room temperature under mild ultraviolet excitation, was below 1 ppb.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd