Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/109/11/10.1063/1.4962960
1.
S. W. Glunz, J. Benick, D. Biro, M. Bivour, M. Hermle, D. Pysch, M. Rauer, C. Reichel, A. Richter, M. Rudiger, C. Schmiga, D. Suwito, A. Wolf, and R. Preu, paper presented at the 35th IEEE Photovoltaic Specialists Conference (PVSC), 2010.
2.
J. Schmidt and K. Bothe, “ Structure and transformation of the metastable boron- and oxygen-related defect center in crystalline silicon,” Phys. Rev. B 69(2), 024107 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.024107
3.
J. Zhao, A. Wang, and M. A. Green, “ Performance degradation in CZ(B) cells and improved stability high efficiency PERT and PERL silicon cells on a variety of SEH MCZ(B), FZ(B) and CZ(Ga) substrates,” Prog. Photovoltaics: Res. Appl. 8(5), 549 (2000).
http://dx.doi.org/10.1002/1099-159X(200009/10)8:5<549::AID-PIP346>3.0.CO;2-Y
4.
D. Macdonald and L. J. Geerligs, “ Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon,” Appl. Phys. Lett. 85(18), 4061 (2004).
http://dx.doi.org/10.1063/1.1812833
5.
D. K. Schroder, Semiconductor Material and Device Characterization, 3rd ed. ( John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2006).
6.
S. M. Sze and K. K. Ng, Physics of Semiconductor Devices ( John Wiley & Sons, 2006).
7.
J. Zhao, “ Recent advances of high-efficiency single crystalline silicon solar cells in processing technologies and substrate materials,” Sol. Energy Mater. Sol. Cells 82(1–2), 53 (2004).
http://dx.doi.org/10.1016/j.solmat.2004.01.005
8.
S. W. Glunz, F. Feldmann, A. Richter, M. Bivour, C. Reichel, H. Steinkemper, J. Benick, and M. Hermle, “ The irresistible charm of a simple current flow pattern-25% with a solar cell featuring a full-area back contact,” in 31st European Photovoltaic Solar Energy Conference and Exhibition, 2015.
9.
K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, “ Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell,” IEEE J. Photovoltaics 4(6), 1433 (2014).
http://dx.doi.org/10.1109/JPHOTOV.2014.2352151
10.
Y. Zhang, R. Liu, S.-T. Lee, and B. Sun, “ The role of a LiF layer on the performance of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/Si organic-inorganic hybrid solar cells,” Appl. Phys. Lett. 104(8), 083514 (2014).
http://dx.doi.org/10.1063/1.4866968
11.
J. Bullock, M. Hettick, J. Geissbühler, A. J. Ong, T. Allen, C. M. Sutter-Fella, T. Chen, H. Ota, E. W. Schaler, S. De Wolf, C. Ballif, A. Cuevas, and A. Javey, “ Efficient silicon solar cells with dopant-free asymmetric heterocontacts,” Nat. Energy 1, 15031 (2016).
http://dx.doi.org/10.1038/nenergy.2015.31
12.
J. Bullock, P. Zheng, Q. Jeangros, M. Tosun, M. Hettick, C. M. Sutter-Fella, Y. Wan, T. Allen, D. Yan, and D. Macdonald, “ Lithium fluoride based electron contacts for high efficiency n-type crystalline silicon solar cells,” Adv. Energy Mater. (published online).
http://dx.doi.org/10.1002/aenm.201600241
13.
Y. Wan, C. Samundsett, J. Bullock, T. Allen, M. Hettick, D. Yan, P. Zheng, X. Zhang, J. Cui, and J. A. McKeon, “ Magnesium fluoride electron-selective contacts for crystalline silicon solar cells,” ACS Appl. Mater. Interfaces 8(23), 1467114677 (2016).
http://dx.doi.org/10.1021/acsami.6b03599
14.
Y. Zhang, W. Cui, Y. Zhu, F. Zu, L. Liao, S.-T. Lee, and B. Sun, “ High efficiency hybrid PEDOT:PSS/nanostructured silicon Schottky junction solar cells by doping-free rear contact,” Energy Environ. Sci. 8(1), 297 (2015).
http://dx.doi.org/10.1039/C4EE02282C
15.
S. Avasthi, W. E. McClain, G. Man, A. Kahn, J. Schwartz, and J. C. Sturm, “ Hole-blocking titanium-oxide/silicon heterojunction and its application to photovoltaics,” Appl. Phys. Lett. 102(20), 203901 (2013).
http://dx.doi.org/10.1063/1.4803446
16.
X. Yang, P. Zheng, Q. Bi, and K. Weber, “ Silicon heterojunction solar cells with electron selective TiOx contact,” Sol. Energy Mater. Sol. Cells 150, 32 (2016).
http://dx.doi.org/10.1016/j.solmat.2016.01.020
17.
T. G. Allen, P. Zheng, B. Vaughan, M. Barr, Y. Wan, C. Samundsett, J. Bullock, and A. Cuevas, paper presented at the IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, 2016.
18.
P. L. Janega, J. McCaffrey, D. Landheer, M. Buchanan, M. Denhoff, and D. Mitchel, “ Contact resistivity of some magnesium/silicon and magnesium silicide/silicon structures,” Appl. Phys. Lett. 53(21), 2056 (1988).
http://dx.doi.org/10.1063/1.100496
19.
C. W. Tang and S. A. VanSlyke, “ Organic electroluminescent diodes,” Appl. Phys. Lett. 51(12), 913 (1987).
http://dx.doi.org/10.1063/1.98799
20.
L. S. L. Liao, J. K. Madathil, P. K. Raychaudhuri, and C. W. Tang, Google patents application US 10/062,361 (21 September 2004).
21.
R. B. Godfrey and M. A. Green, “ 655 mV open-circuit voltage, 17.6% efficient silicon MIS solar cells,” Appl. Phys. Lett. 34(11), 790 (1979).
http://dx.doi.org/10.1063/1.90646
22.
R. Singh, M. A. Green, and K. Rajkanan, “ Review of conductor-insulator-semiconductor (CIS) solar cells,” Sol. Cells 3(2), 95 (1981).
http://dx.doi.org/10.1016/0379-6787(81)90088-0
23.
M. Akiya and H. Nakamura, “ Low ohmic contact to silicon with a magnesium/aluminum layered metallization,” J. Appl. Phys. 59(5), 1596 (1986).
http://dx.doi.org/10.1063/1.336469
24.
J. Kanicki, “ Contact resistance to undoped and phosphorus-doped hydrogenated amorphous silicon films,” Appl. Phys. Lett. 53(20), 1943 (1988).
http://dx.doi.org/10.1063/1.100330
25.
H. Matsuura, T. Okuno, H. Okushi, S. Yamasaki, A. Matsuda, N. Hata, H. Oheda, and K. Tanaka, “ Ohmic contact properties of magnesium evaporated onto undoped and p-doped a-Si:H,” Jpn. J. Appl. Phys., Part 2 22(3), L197 (1983).
http://dx.doi.org/10.1143/JJAP.22.L197
26.
G. E. Jellison, Jr. and F. A. Modine, “ Parameterization of the optical functions of amorphous materials in the interband region,” Appl. Phys. Lett. 69(3), 371 (1996).
http://dx.doi.org/10.1063/1.118064
27.
M. G. Coleman, W. L. Bailey, C. B. Harris, and I. A. Lesk, U.S. patent 4,137,123 (30 January 1979).
28.
O. Tabata, R. Asahi, H. Funabashi, K. Shimaoka, and S. Sugiyama, “ Anisotropic etching of silicon in TMAH solutions,” Sens. Actuators, A 34(1), 51 (1992).
http://dx.doi.org/10.1016/0924-4247(92)80139-T
29.
L. M. Landsberger, S. Naseh, M. Kahrizi, and M. Paranjape, “ On hillocks generated during anisotropic etching of Si in TMAH,” J. Microelectromech. Syst. 5(2), 106 (1996).
http://dx.doi.org/10.1109/84.506198
30.
J. S. You, D. Kim, J. Y. Huh, H. J. Park, J. J. Pak, and C. S. Kang, “ Experiments on anisotropic etching of Si in TMAH,” Sol. Energy Mater. Sol. Cells 66(1–4), 37 (2001).
http://dx.doi.org/10.1016/S0927-0248(00)00156-2
31.
P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J. F. Lelievre, A. Chaumartin, A. Fave, and M. Lemiti, “ Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching,” Sol. Energy Mater. Sol. Cells 90(15), 2319 (2006).
http://dx.doi.org/10.1016/j.solmat.2006.03.005
http://aip.metastore.ingenta.com/content/aip/journal/apl/109/11/10.1063/1.4962960
Loading
/content/aip/journal/apl/109/11/10.1063/1.4962960
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/109/11/10.1063/1.4962960
2016-09-15
2016-09-27

Abstract

Among the metals, magnesium has one of the lowest work functions, with a value of 3.7 eV. This makes it very suitable to form an electron-conductive cathode contact for silicon solar cells. We present here the experimental demonstration of an amorphous silicon/magnesium/aluminium (a-Si:H/Mg/Al) passivating contact for silicon solar cells. The conduction properties of a thermally evaporated Mg/Al contact structure on -type crystalline silicon (c-Si) are investigated, achieving a low resistivity Ohmic contact to moderately doped -type c-Si (∼5 × 1015 cm−3) of ∼0.31 Ω cm2 and ∼0.22 Ω cm2 for samples with and without an amorphous silicon passivating interlayer, respectively. Application of the passivating cathode to the whole rear surface of -type front junction c-Si solar cells leads to a power conversion efficiency of 19% in a proof-of-concept device. The low thermal budget of the cathode formation, its dopant-less nature, and the simplicity of the device structure enabled by the Mg/Al contact open up possibilities in designing and fabricating low-cost silicon solar cells.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/109/11/1.4962960.html;jsessionid=gkkL-3ebgOykwLBTVrGGR7cT.x-aip-live-06?itemId=/content/aip/journal/apl/109/11/10.1063/1.4962960&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/109/11/10.1063/1.4962960&pageURL=http://scitation.aip.org/content/aip/journal/apl/109/11/10.1063/1.4962960'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,