Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/109/11/10.1063/1.4963003
1.
N. Hur, S. Park, P. A. Sharma, S. Guha, and S. W. Cheong, Phys. Rev. Lett. 93(10), 107207 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.107207
2.
E. Brown, C. Ma, J. Acharya, B. Ma, J. Wu, and J. Li, ACS Appl. Mater. Interfaces 6(24), 22417 (2014).
http://dx.doi.org/10.1021/am506247w
3.
I. Bica, E. M. Anitas, L. M. E. Averis, and M. Bunoiu, J. Ind. Eng. Chem. 21, 1323 (2015).
http://dx.doi.org/10.1016/j.jiec.2014.05.048
4.
Z. X. Khoo, J. E. M. Teoh, Y. Liu, C. Kai Chua, S. Yang, J. An, K. F. Leong, and W. Y. Yeong, Virtual Phys. Prototyping 10, 103–122 (2015).
http://dx.doi.org/10.1080/17452759.2015.1097054
5.
C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, IEEE Trans. Antennas Propag. 51(10), 2596 (2003).
http://dx.doi.org/10.1109/TAP.2003.817563
6.
S. Weber, P. Lunkenheimer, R. Fichtl, J. Hemberger, V. Tsurkan, and A. Loidl, Phys. Rev. Lett. 96(15), 157202 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.157202
7.
S. He, G. Liu, J. Xu, J. Yang, Y. Chen, S. Kang, S. Yan, and L. Mei, Mater. Lett. 89, 159 (2012).
http://dx.doi.org/10.1016/j.matlet.2012.08.096
8.
M. Naveed Ul-Haq, T. Yunus, A. Mumtaz, V. V. Shvartsman, and D. C. Lupascu, J. Alloys Compd. 640, 462 (2015).
http://dx.doi.org/10.1016/j.jallcom.2015.03.215
9.
Y. S. Koo, T. Bonaedy, K. D. Sung, J. H. Jung, J. B. Yoon, Y. H. Jo, M. H. Jung, H. J. Lee, T. Y. Koo, and Y. H. Jeong, Appl. Phys. Lett. 91(21), 212903 (2007).
http://dx.doi.org/10.1063/1.2817940
10.
Y. Han, L. Li, D. Guo, X. Ren, and W. Xia, Mater. Lett. 98, 19 (2013).
http://dx.doi.org/10.1016/j.matlet.2013.02.010
11.
P. Martins, X. Moya, L. C. Phillips, S. Kar-Narayan, N. D. Mathur, and S. Lanceros-Mendez, J. Phys. D: Appl. Phys. 44(48), 482001 (2011).
http://dx.doi.org/10.1088/0022-3727/44/48/482001
12.
Y. P. Yao, Y. Hou, S. N. Dong, and X. G. Li, J. Appl. Phys. 110(1), 014508 (2011).
http://dx.doi.org/10.1063/1.3603042
13.
B. P. Mandal, K. Vasundhara, E. Abdelhamid, G. Lawes, H. G. Salunke, and A. K. Tyagi, J. Phys. Chem. C 118(36), 20819 (2014).
http://dx.doi.org/10.1021/jp5065787
14.
T. N. Narayanan, B. P. Mandal, A. K. Tyagi, A. Kumarasiri, X. Zhan, M. G. Hahm, M. R. Anantharaman, G. Lawes, and P. M. Ajayan, Nano Lett. 12(6), 3025 (2012).
http://dx.doi.org/10.1021/nl300849u
15.
Manjusha, M. Rawat, and K. L. Yadav, IEEE Trans. Dielectr. Electr. Insul. 22(3), 1462 (2015).
http://dx.doi.org/10.1109/TDEI.2015.7116338
16.
G. Catalan, Appl. Phys. Lett. 88(10), 102902 (2006).
http://dx.doi.org/10.1063/1.2177543
17.
P. Martins, Y. V. Kolen'Ko, J. Rivas, and S. Lanceros-Mendez, ACS Appl. Mater. Interfaces 7(27), 15017 (2015).
http://dx.doi.org/10.1021/acsami.5b04102
18.
P. Martins, A. Larrea, R. Gonçalves, G. Botelho, E. V. Ramana, S. K. Mendiratta, V. Sebastian, and S. Lanceros-Mendez, ACS Appl. Mater. Interfaces 7(21), 11224 (2015).
http://dx.doi.org/10.1021/acsami.5b01196
19.
P. Martins, C. M. Costa, and S. Lanceros-Mendez, Appl. Phys. A: Mater. Sci. Process. 103(1), 233 (2011).
http://dx.doi.org/10.1007/s00339-010-6003-7
20.
P. Martins, X. Moya, C. Caparrós, J. Fernandez, N. D. Mathur, and S. Lanceros-Mendez, J. Nanopart. Res. 15(8), 182533 (2013).
http://dx.doi.org/10.1007/s11051-013-1825-9
21.
P. Martins, R. Gonçalves, S. Lanceros-Mendez, A. Lasheras, J. Gutiérrez, and J. M. Barandiarán, Appl. Surf. Sci. 313, 215 (2014).
http://dx.doi.org/10.1016/j.apsusc.2014.05.187
22.
M. Alnassar, A. Alfadhel, Yu P. Ivanov, and J. Kosel, J. Appl. Phys. 117(17), 17D711 (2015).
http://dx.doi.org/10.1063/1.4913943
23.
A. Kumar, K. L. Yadav, and J. Rani, Mater. Chem. Phys. 134(1), 430 (2012).
http://dx.doi.org/10.1016/j.matchemphys.2012.03.013
24.
X. X. Wang, K. H. Lam, X. G. Tang, and H. L. W. Chan, Solid State Commun. 130(10), 695 (2004).
http://dx.doi.org/10.1016/j.ssc.2004.03.020
25.
P. Martins, C. M. Costa, G. Botelho, S. Lanceros-Mendez, J. M. Barandiaran, and J. Gutierrez, Mater. Chem. Phys. 131(3), 698 (2012).
http://dx.doi.org/10.1016/j.matchemphys.2011.10.037
26.
F. Yang, Y. M. Wen, P. Li, M. Zheng, and L. X. Bian, Sens. Actuators, A 141(1), 129 (2008).
http://dx.doi.org/10.1016/j.sna.2007.08.004
27.
M. Rawat and K. L. Yadav, J. Polym. Res. 22(12), 230 (2015).
http://dx.doi.org/10.1007/s10965-015-0874-4
28.
J. Rani, K. L. Yadav, and S. Prakash, Composites, Part B 79, 138 (2015).
http://dx.doi.org/10.1016/j.compositesb.2015.04.041
29.
T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, and Y. Tokura, Phys. Rev. B: Condens. Matter Mater. Phys. 67(18), 180401(R) (2003).
http://dx.doi.org/10.1103/PhysRevB.67.180401
30.
J. Rani, K. L. Yadav, and S. Prakash, Mater. Chem. Phys. 147(3), 1183 (2014).
http://dx.doi.org/10.1016/j.matchemphys.2014.07.002
31.
M. M. Sutar, A. N. Tarale, S. R. Jigajeni, S. B. Kulkarni, V. R. Reddy, and P. B. Joshi, Solid State Sci. 14(8), 1064 (2012).
http://dx.doi.org/10.1016/j.solidstatesciences.2012.05.016
32.
J. Beltran-Huarac, R. Martinez, and G. Morell, J. Appl. Phys. 115(8), 084102 (2014).
http://dx.doi.org/10.1063/1.4866555
33.
M. Rawat and K. L. Yadav, Smart Mater. Struct. 24(4), 045041 (2015).
http://dx.doi.org/10.1088/0964-1726/24/4/045041
http://aip.metastore.ingenta.com/content/aip/journal/apl/109/11/10.1063/1.4963003
Loading
/content/aip/journal/apl/109/11/10.1063/1.4963003
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/109/11/10.1063/1.4963003
2016-09-16
2016-09-29

Abstract

Flexible particulate composites with general formula [xCoFeO]/[(1 − x) (Polyvinylidene fluoride)] were prepared for x = 0, 3, 11, and 20 wt. %. The dielectric constant, dielectric loss, and saturation magnetization of the composites increase with the increasing CoFeO content, being 13, 0.13, and 13 emu g−1, respectively, for x = 20. The change in the dielectric response (magnetodielectric effect (%)) is the highest among all the reported polymer-based composites for the x = 20 sample (4.2%), and on the contrary, the highest value of the magnetodielectric coefficient (γ) is higher on the x = 3 sample (0.015 emu−2 g2). Such features have large application potential in areas such as filters, magnetic field sensors and actuators, among others.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/109/11/1.4963003.html;jsessionid=XCT2EYKYEFEuZFowvjvPcbc6.x-aip-live-02?itemId=/content/aip/journal/apl/109/11/10.1063/1.4963003&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/109/11/10.1063/1.4963003&pageURL=http://scitation.aip.org/content/aip/journal/apl/109/11/10.1063/1.4963003'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,