Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
U. K. Mishra and P. Parikh, Proc. IEEE 90, 1022 (2002).
M. H. Wong, S. Keller, S. Dasgupta, Nidhi, D. J. Denninghoff, S. Kolluri, D. F. Brown, J. Lu, N. A. Fichtenbaum, E. Ahmadi, U. Singisetti, A. Chini, S. Rajan, S. P. DenBaars, J. S. Speck, and U. K. Mishra, Semicond. Sci. Technol. 28, 074009 (2013).
G. Meneghesso, M. Meneghini, and E. Zanoni, Jpn. J. Appl. Phys., Part 1 53, 100211 (2014).
D. Marcon, G. Meneghesso, T. Wu, S. Stoffels, M. Meneghini, E. Zanoni, and S. Decoutere, IEEE Trans. Electron Devices 60, 3132 (2013).
E. Zanoni, M. Meneghini, A. Chini, D. Marcon, and G. Meneghesso, IEEE Trans. Electron Devices 60, 3119 (2013).
J. A. del Alamo and J. Joh, Microelectron. Reliab. 49, 1200 (2009).
E. A. Douglas, C. Y. Chang, D. J. Cheney, B. P. Gila, C. F. Lo, L. Lu, R. Holzworth, P. Whiting, K. Jones, G. D. Via, J. Kim, S. Jang, F. Ren, and S. J. Pearton, Microelectron. Reliab. 51, 207 (2011).
D. Cheney, E. Douglas, L. Liu, C. F. Lo, B. Gila, F. Ren, and S. Pearton, Materials 5, 2498 (2012).
F. Gao, B. Lu, L. Li, S. Kaun, J. S. Speck, C. V. Thompson, and T. Palacios, Appl. Phys. Lett. 99, 223506 (2011).
D. J. Smith, D. Chandrasekhar, B. Sverdlov, A. Botchkarev, A. Salvador, and H. Morkoç, Appl. Phys. Lett. 67, 1830 (1995).
D. Cherns, W. Young, and F. Ponce, Mater. Sci. Eng. B 50, 76 (1997).
J. L. Rouviere, M. Arlery, B. Daudin, G. Feuillet, and O. Briot, Mater. Sci. Eng. B 50, 61 (1997).
V. Potin, P. Vermaut, P. Ruterana, and G. Nouet, J. Electron. Mater. 27, 266 (1998).
X. Wu, P. Fini, E. Tarsa, B. Heying, S. Keller, U. Mishra, S. DenBaars, and J. S. Speck, J. Cryst. Growth 189–190, 231 (1998).
S. Kret, P. Ruterana, and G. Nouet, J. Phys. Condens. Matter 12, 10249 (2000).
G. P. Dimitrakopulos, P. Komninou, J. Kioseoglou, T. Kehagias, E. Sarigiannidou, A. Georgakilas, G. Nouet, and T. Karakostas, Phys. Rev. B 64, 245325 (2001).
D. N. Zakharov, Z. Liliental-Weber, B. Wagner, Z. J. Reitmeier, E. A. Preble, and R. F. Davis, Phys. Rev. B 71, 235334 (2005).
S. Y. Park, C. Floresca, U. Chowdhury, J. L. Jimenez, C. Lee, E. Beam, P. Saunier, T. Balistreri, and M. J. Kim, Microelectron. Reliab. 49, 478 (2009).
U. Chowdhury, J. L. Jimenez, C. Lee, E. Beam, P. Saunier, T. Balistreri, S. Y. Park, T. H. Lee, J. Wang, M. J. Kim, J. Joh, and J. A. del Alamo, IEEE Electron Device Lett. 29, 1098 (2008).
Z. Liliental-Weber, Jpn. J. Appl. Phys., Part 1 53, 100205 (2014).
W. S. Tan, M. J. Uren, P. W. Fry, P. A. Houston, R. S. Balmer, and T. Martin, Solid State Electron. 50, 511 (2006).
M. Leszczynski, P. Prystawko, P. Kruszewski, J. Plesiewicz, I. Kasalynas, R. Dwili, M. Zaj, and R. Kucharski, in Proceedings of the 43rd European Microwave Conference (2013), pp. 526529.
A. M. Haghiri-Gosnet, M. Hervieu, C. Simon, B. Mercey, and B. Raveau, J. Appl. Phys. 88, 3545 (2000).
F. A. Marino, N. Faralli, T. Palacios, D. K. Ferry, S. M. Goodnick, and M. Saraniti, IEEE Trans. Electron Devices 57, 353 (2010).
X. J. Ning, F. R. Chien, P. Pirouz, J. W. Yang, and M. A. Khan, J. Mater. Res. 11, 580 (1996).
I. Arslan and N. Browning, Phys. Rev. B 65, 075310 (2002).
D. M. Follstaedt, S. R. Lee, P. P. Provencio, A. A. Allerman, J. A. Floro, and M. H. Crawford, Appl. Phys. Lett. 87, 121112 (2005).
S. K. Mathis, A. E. Romanov, L. F. Chen, G. E. Beltz, W. Pompe, and J. S. Speck, J. Cryst. Growth 231, 371 (2001).
J. W. P. Hsu, M. J. Manfra, R. J. Molnar, B. Heying, and J. S. Speck, Appl. Phys. Lett. 81, 79 (2002).
H. Zhang and E. T. Yu, J. Appl. Phys. 99, 014501 (2006).
P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. Keller, J. S. Speck, S. P. DenBaars, and U. K. Mishra, Appl. Phys. Lett. 73, 975 (1998).
P. Makaram, J. Joh, J. A. del Alamo, T. Palacios, and C. V. Thompson, Appl. Phys. Lett. 96, 233509 (2010).
J. B. Fonder, L. Chevalier, C. Genevois, O. Latry, C. Duperrier, F. Temcamani, and H. Maanane, Microelectron. Reliab. 52, 2205 (2012).
P. G. Whiting, N. G. Rudawski, M. R. Holzworth, S. J. Pearton, K. S. Jones, L. Liu, T. S. Kang, and F. Ren, Microelectron. Reliab. 52, 2542 (2012).
M. Tapajna, N. Killat, V. Palankovski, D. Gregusova, K. Cico, J. Carlin, N. Grandjean, M. Kuball, and J. Kuzmik, IEEE Trans. Electron Devices 61, 2793 (2014).
M. Meneghini, N. Ronchi, A. Stocco, G. Meneghesso, U. K. Mishra, Y. Pei, and E. Zanoni, IEEE Trans. Electron Devices 58, 2996 (2011).
L. Lv, J. G. Ma, Y. R. Cao, J. C. Zhang, W. Zhang, L. Li, S. R. Xu, X. H. Ma, X. T. Ren, and Y. Hao, Microelectron. Reliab. 51, 2168 (2011).
A. Kalavagunta, M. Silvestri, M. J. Beck, S. K. Dixit, R. D. Schrimpf, R. A. Reed, D. M. Fleetwood, L. Shen, and U. K. Mishra, IEEE Trans. Nucl. Sci. 56, 3192 (2009).
A. Kalavagunta, S. Mukherjee, R. Reed, and R. D. Schrimpf, Microelectron. Reliab. 54, 570 (2014).
J. Bai, X. Huang, M. Dudley, B. Wagner, R. F. Davis, L. Wu, E. Sutter, Y. Zhu, and B. J. Skromme, J. Appl. Phys. 98, 063510 (2005).
J. Mei, S. Srinivasan, R. Liu, F. A. Ponce, Y. Narukawa, and T. Mukai, Appl. Phys. Lett. 88, 141912 (2006).
F. C. Frank and J. F. Nicholas, London, Edinburgh, Dublin Philos. Mag. J. Sci. 44, 1213 (1953).
J. Lähnemann, U. Jahn, O. Brandt, T. Flissikowski, P. Dogan, and H. T. Grahn, J. Phys. D: Appl. Phys. 47, 423001 (2014).
I. Tischer, M. Feneberg, M. Schirra, H. Yacoub, R. Sauer, K. Thonke, T. Wunderer, F. Scholz, L. Dieterle, E. Müller, and D. Gerthsen, Phys. Rev. B 83, 035314 (2011).
C. Stampfl and C. Van de Walle, Phys. Rev. B 57, R15052 (1998).
M. Hirose, K. Matsushita, K. Takagi, and K. Tsuda, in Proceedings of the IEEE Compound Semiconductor Integrated Circuits Symposium (IEEE, 2013), pp. 14.
M. A. der Maur and A. Di Carlo, IEEE Trans. Electron Devices 60, 3142 (2013).
P. Ivo, A. Glowacki, E. Bahat-Treidel, R. Lossy, J. Würfl, C. Boit, and G. Tränkle, Microelectron. Reliab. 51, 217 (2011).
M. A. Moram, T. C. Sadler, M. Haüberlen, M. J. Kappers, and C. J. Humphreys, Appl. Phys. Lett. 97, 261907 (2010).

Data & Media loading...


Article metrics loading...



Here, we present the observation of a bias-induced, degradation-enhancing defect process in plasma-assisted molecular beam epitaxy grown reverse gate-biased AlGaN/GaN high electron mobility transistors (HEMTs), which is compatible with the current theoretical framework of HEMT degradation. Specifically, we utilize both conventional transmission electron microscopy and aberration-corrected transmission electron microscopy to analyze microstructural changes in not only high strained regions in degraded AlGaN/GaN HEMTs but also the extended gate-drain access region. We find a complex defect structure containing an basal stacking fault and offer a potential mechanism for device degradation based on this defect structure. This work supports the reality of multiple failure mechanisms during device operation and identifies a defect potentially involved with device degradation.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd