Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “ Electric field effect in atomically thin carbon films,” Science 306, 666669 (2004).
P. E. Trevisanutto, C. Giorgetti, L. Reining, M. Ladisa, and V. Olevano, “ Ab initio GW many-body effects in graphene,” Phys. Rev. Lett. 101, 226405226408 (2008).
D. Malko, C. Neiss, F. Viñes, and A. Görling, “ Competition for graphene: Graphynes with direction-dependent Dirac cones,” Phys. Rev. Lett. 108, 086804086808 (2012).
A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, “ Emerging photoluminescence in monolayer MoS2,” Nano Lett. 10, 12711275 (2010).
L. E. Steinkasserer, N. Gaston, and B. Paulus, “ Weak interactions in graphane/BN systems under static electric fields—A periodic ab-initio study,” J. Chem. Phys. 142, 154701 (2015).
X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, “ A metal-free polymeric photocatalyst for hydrogen production from water under visible light,” Nat. Mater. 8, 7680 (2009).
J. Mahmood, E. K. Lee, M. Jung, D. Shin, I.-Y. Jeon, S.-M. Jung, H.-J. Choi, J.-M. Seo, S.-Y. Bae, S.-D. Sohn, N. Park, J. H. Oh, H.-J. Shin, and J.-B. Baek, “ Nitrogenated holey two-dimensional structures,” Nat. Commun. 6, 64866492 (2015).
R. Zhang, B. Li, and J. Yang, “ Effects of stacking order, layer number and external electric field on electronic structures of few-layer C2N,” Nanoscale 7, 1406214070 (2015).
R. Zhang, B. Li, and J. Yang, “ Bilayer C2N nanosheet: A promising metal-free photocatalyst for water splitting,” e-print arXiv:1505.02768.
J. Mahmood, S.-M. Jung, S.-J. Kim, J. Park, J.-W. Yoo, and J.-B. Baek, “ Cobalt oxide encapsulated in C2N-2D network polymer as a catalyst for hydrogen evolution,” Chem. Mater. 27, 48604864 (2015).
L. Yang, “ Excitonic effects on optical absorption spectra of doped graphene,” Nano Lett. 11, 38443847 (2011).
L. Yang, J. Deslippe, C.-H. Park, M. L. Cohen, and S. G. Louie, “ Excitonic effects on the optical response of graphene and bilayer graphene,” Phys. Rev. Lett. 103, 186802186805 (2009).
P. Cudazzo, C. Attaccalite, I. V. Tokatly, and A. Rubio, “ Strong charge-transfer excitonic effects and the Bose-Einstein exciton condensate in graphane,” Phys. Rev. Lett. 104, 226804226807 (2010).
B. Arnaud, S. Lebègue, P. Rabiller, and M. Alouani, “ Huge excitonic effects in layered hexagonal boron nitride,” Phys. Rev. Lett. 96, 026402026405 (2006).
D. Y. Qiu, F. H. da Jornada, and S. G. Louie, “ Optical spectrum of MoS2: Many-body effects and diversity of exciton states,” Phys. Rev. Lett. 111, 216805216809 (2013).
V. Tran, R. Soklaski, Y. Liang, and L. Yang, “ Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus,” Phys. Rev. B 89, 235319235324 (2014).
H. Shu, Y. Li, S. Wang, and J. Wang, “ Thickness-dependent electronic and optical properties of Bernal-stacked few-layer germanane,” J. Phys. Chem. C 119, 1552615531 (2015).
L. Yang, M. L. Cohen, and S. G. Louie, “ Excitonic effects in the optical spectra of graphene nanoribbons,” Nano Lett. 7, 31123115 (2007).
G. Strinati, H. J. Mattausch, and W. Hanke, “ Dynamical aspects of correlation corrections in a covalent crystal,” Phys. Rev. B 25, 28672888 (1982).
G. Strinati, “ Application of the Green's functions method to the study of the optical properties of semiconductors,” Riv. Nuovo Cimento 11, 186 (1988).
D. R. Bowler and T. Miyazaki, “ O(N) methods in electronic structure calculations,” Rep. Prog. Phys. 75, 36503 (2012).
M. Rohlfing and S. G. Louie, “ Electron-hole excitations and optical spectra from first principles,” Phys. Rev. B 62, 49274944 (2000).
W. Wei and T. Jacob, “ Strong excitonic effects in the optical properties of graphitic carbon nitride g-C3N4 from first principles,” Phys. Rev. B 87, 085202085208 (2013).
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, “ QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials,” J. Phys.: Condens. Matter 21, 395502395520 (2009).
J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M. L. Cohen, and S. G. Louie, “ BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures,” Comput. Phys. Commun. 183, 12691289 (2012).
M. Hybertsen and S. Louie, “ Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies,” Phys. Rev. B 34, 53905413 (1986).
J.-H. Choi, P. Cui, H. Lan, and Z. Zhang, “ Linear scaling of the exciton binding energy versus the band gap of two-dimensional materials,” Phys. Rev. Lett. 115, 066403066407 (2015).
S. Latini, T. Olsen, and K. S. Thygesen, “ Excitons in van der Waals heterostructures: The important role of dielectric screening,” Phys. Rev. B 92, 245123245135 (2015).

Data & Media loading...


Article metrics loading...



A recently synthesized layered material CN was investigated based on many-body perturbation theory using the plus Bethe-Salpeter equation approach. The electronic band gap was determined to be ranging from 3.75 to 1.89 eV from the monolayer to the bulk. Significant quasiparticle corrections, of more than 0.9 eV, to the Kohn-Sham band gaps from the local density approximation calculations are found. Strong play a crucial role in optical properties. We found large binding energies of greater than 0.6 eV for bound excitons in few-layer CN, while it is only 0.04 eV in bulk CN. All the structures exhibit strong and broad optical absorption in the visible light region, which makes CN a promising candidate for solar energy conversion, such as photocatalytic water splitting.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd