Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
H. Daido, F. Miki, K. Mima, M. Fujita, K. Sawai, H. Fujita, Y. Kitagawa, S. Nakai, and C. Yamanaka, Phys. Rev. Lett. 56, 846 (1986).
C. Courtois, A. D. Ash, D. M. Chambers, R. Grundy, and N. C. Woolsey, J. Appl. Phys. 98, 054913 (2005).
S. Fujioka, Z. Zhang, N. Yamamoto, S. Ohira, Y. Fujii, K. Ishihara, T. Johzaki, A. Sunahara, Y. Arikawa, K. Shigemori, Y. Hironaka, Y. Sakawa, Y. Nakata, J. Kawanaka, H. Nagatomo, H. Shiraga, N. Miyanaga, T. Norimatsu, H. Nishimura, and H. Azechi, Plasma Phys. Controlled Fusion 54, 124042 (2012).
S. Fujioka, Z. Zhang, K. Ishihara, K. Shigemori, Y. Hironaka, T. Johzaki, A. Sunahara, N. Yamamoto, H. Nakashima, T. Watanabe, H. Shiraga, H. Nishimura, and H. Azechi, Nat. Sci. Rep. 3, 1170 (2013).
L. Gao, H. Ji, G. Fiksel, W. Fox, M. Evans, and N. Alfonso, Phys. Plasmas 23, 043106 (2016).
P. Mora, Phys. Rev. Lett. 90, 185002 (2003).
S. Atzeni and J. Meyer-Ter-Vehn, The Physics of Inertial Fusion ( Oxford University Press, 2004).
L. J. Waxer, D. N. Maywar, T. J. Kessler, B. E. Kruschwitz, S. J. Loucks, R. L. McCrory, D. D. Meyerhofer, S. F. B. Morse, C. Stoeckl, and J. D. Zuegel, Opt. Photonics News 16, 30 (2005).
J. J. Santos, M. Bailly-Grandvaux, L. Giuffrida, P. Forestier-Colleoni, S. Fujioka, Z. Zhang, P. Korneev, R. Bouillaud, S. Dorard, D. Batani, M. Chevrot, J. E. Cross, R. Crowston, J. L. Dubois, J. Gazave, G. Gregori, E. D'Humières, S. Hulin, K. Ishihara, S. Kojima, E. Loyez, J. R. Marquès, A. Morace, P. Nicolai, O. Peyrusse, A. Poyé, D. Raffestin, J. Ribolzi, M. Roth, G. Schaumann, F. Serres, V. T. Tikhonchuk, P. Vacar, and N. Woolsey, New J. Phys. 17, 083051 (2015).
K. F. F. Law, M. Bailly-Grandvaux, A. Morace, S. Sakata, K. Matsuo, S. Kojima, S. Lee, X. Vaisseau, Y. Arikawa, A. Yogo, K. Kondo, Z. Zhang, C. Bellei, J. J. Santos, S. Fujioka, and H. Azechi, Appl. Phys. Lett. 108, 091104 (2016).

Data & Media loading...


Article metrics loading...



Magnetic field generation by laser-driven coils is a promising way of magnetizing plasma in laboratory high-energy-density plasma experiments. A typical configuration consists of two electrodes—one electrode is irradiated with a high-intensity laser beam and another electrode collects charged particles from the expanding plasma. The two electrodes are separated by a narrow gap forming a capacitor-like configuration and are connected with a conducting wire-coil. The charge-separation in the expanding plasma builds up a potential difference between the electrodes that drives the electrical current in the coil. A magnetic field of tens to hundreds of Teslas generated inside the coil has been reported. This paper presents a simple model that estimates the magnetic field using simple assumptions. The results are compared with the published experimental data.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd