Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/109/13/10.1063/1.4964120
1.
M. A. Steiner, J. F. Geisz, I. García, D. J. Friedman, A. Duda, and S. R. Kurtz, J. Appl. Phys. 113, 123109 (2013).
http://dx.doi.org/10.1063/1.4798267
2.
A. W. Bett, F. Dimroth, R. Lockenhoff, E. Oliva, and J. Schubert, in 33rd IEEE Photovoltaic Specialists Conference, 2008. PVSC'08 (IEEE, 2008), pp. 15.
3.
O. D. Miller, E. Yablonovitch, and S. R. Kurtz, IEEE J. Photovoltaics 2, 303 (2012).
http://dx.doi.org/10.1109/JPHOTOV.2012.2198434
4.
B. Behaghel, R. Tamaki, N. Vandamme, K. Watanabe, C. Dupuis, N. Bardou, H. Sodabanlu, A. Cattoni, Y. Okada, M. Sugiyama, and S. Collin, Appl. Phys. Lett. 106, 081107 (2015).
http://dx.doi.org/10.1063/1.4913469
5.
M. C. A. York, F. Proulx, D. P. Masson, A. Jaouad, B. Bouzazi, R. Arès, V. Aimez, and S. Fafard, Proc. SPIE 9743, 97430Y (2016).
http://dx.doi.org/10.1117/12.2212960
6.
N. Vandamme, H.-L. Chen, A. Gaucher, B. Behaghel, A. Lemaître, A. Cattoni, C. Dupuis, N. Bardou, J.-F. Guillemoles, and S. Collin, IEEE J. Photovoltaics 5, 565 (2014).
http://dx.doi.org/10.1109/JPHOTOV.2014.2371236
7.
U. Rau, U. W. Paetzold, and T. Kirchartz, PRB 90, 035211 (2014).
http://dx.doi.org/10.1103/PhysRevB.90.035211
8.
D. Liang, Y. Kang, Y. Huo, Y. Chen, Y. Cui, and J. S. Harris, Nano Lett. 13, 4850 (2013).
http://dx.doi.org/10.1021/nl402680g
9.
K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller, and J. Park, Nature 520(7549), 656660 (2015).
http://dx.doi.org/10.1038/nature14417
10.
S. M. Lee, A. Kwong, D. Jung, J. Faucher, L. Shen, R. Biswas, M. L. Lee, and J. Yoon, in 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC) (IEEE, 2015), pp. 14.
11.
C. A. Sweet, K. L. Schulte, J. D. Simon, M. A. Steiner, N. Jain, D. L. Young, A. J. Ptak, and C. E. Packard, Appl. Phys. Lett. 108(1), 011906 (2016).
http://dx.doi.org/10.1063/1.4939661
12.
S. Fafard, M. C. A. York, F. Proulx, C. E. Valdivia, M. M. Wilkins, R. Ares, V. Aimez, K. Hinzer, and D. P. Masson, Appl. Phys. Lett. 108(7), 071101 (2016).
http://dx.doi.org/10.1063/1.4941240
13.
O. Höhn, A. W. Walker, A. W. Bett, and H. Helmers, Appl. Phys. Lett. 108(24), 241104 (2016).
http://dx.doi.org/10.1063/1.4954014
14.
D. P. Masson, F. Proulx, and S. Fafard, Prog. Photovolt: Res. Appl. 23, 16871696 (2015).
http://dx.doi.org/10.1002/pip.2709
15.
E. Oliva, F. Dimroth, and A. W. Bett, Prog. Photovoltaics 16, 289 (2008).
http://dx.doi.org/10.1002/pip.811
16.
V. Andreev, V. Khvostikov, V. Kalinovsky, V. Lantratov, V. Grilikhes, V. Rumyantsev, M. Shvarts, V. Fokanov, and A. Pavlov, in Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan (2003), pp. 761763.
17.
M. P. Lumb, M. A. Steiner, J. F. Geisz, and R. J. Walters, J. Appl. Phys. 116, 194504 (2014).
http://dx.doi.org/10.1063/1.4902320
18.
M. C. A. York, F. Proulx, D. P. Masson, A. Jaouad, B. Bouzazi, R. Arès, V. Aimez, and S. Fafard, MRS Adv. 1(14), 881890 (2016).
http://dx.doi.org/10.1557/adv.2016.9
19.
A. Walker, O. Höhn, D. Micha, L. Wagner, H. Helmers, A. Bett, and F. Dimroth, Proc. SPIE 9358, 93580A (2015).
http://dx.doi.org/10.1117/12.2084508
20.
M. Wilkins, C. E. Valdivia, A. M. Gabr, D. Masson, S. Fafard, and K. Hinzer, J. Appl. Phys. 118, 143102 (2015).
http://dx.doi.org/10.1063/1.4932660
21.
J. Schubert, E. Oliva, F. Dimroth, W. Guter, R. Loeckenhoff, and A. W. Bett, IEEE Trans. Electron Devices 56(2), 170175 (2009).
http://dx.doi.org/10.1109/TED.2008.2010603
22.
M. Wilkins, C. E. Valdivia, S. Chahal, M. Ishigaki, D. P. Masson, S. Fafard, and K. Hinzer, Proc. SPIE 9743, 97430W (2016).
http://dx.doi.org/10.1117/12.2213727
23.
J. Kim, J. Hwang, K. Song, N. Kim, J. C. Shin, and J. Lee, Appl. Phys. Lett. 108(25), 253101 (2016).
http://dx.doi.org/10.1063/1.4954039
24.
R. E. Welser, A. K. Sood, J. S. Lewis, N. K. Dhar, and P. S. Wijewarnasuriya, Proc. SPIE 9865, 986505 (2016).
http://dx.doi.org/10.1117/12.2229652
25.
S. Collin, N. Vandamme, J. Goffard, A. Cattoni, A. Lemaitre, and J. F. Guillemoles, in 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC) (IEEE, 2015), pp. 13.
26.
S. Fafard, F. Proulx, M. C. A. York, M. Wilkins, C. E. Valdivia, M. Bajcsy, D. Ban, A. Jaouad, B. Bouzazi, R. Arès, V. Aimez, K. Hinzer, and D. P. Masson, Proc. SPIE 9743, 974304 (2016).
http://dx.doi.org/10.1117/12.2218486
27.
U. Aeberhard, Appl. Phys. Lett. 109(3), 033906 (2016).
http://dx.doi.org/10.1063/1.4959244
28.
L. C. Hirst, M. K. Yakes, J. H. Warner, M. F. Bennett, K. J. Schmieder, R. J. Walters, and P. P. Jenkins, Appl. Phys. Lett. 109(3), 033908 (2016).
http://dx.doi.org/10.1063/1.4959784
29.
S. Fafard, M. C. A. York, F. Proulx, M. M. Wilkins, C. E. Valdivia, M. Bajcsy, D. Ban, R. Arès, V. Aimez, K. Hinzer, M. Ishigaki, and D. P. Masson, in 2016 IEEE 43nd Photovoltaic Specialist Conference (PVSC) (2016).
30.
S. Kabi, T. Das, and D. Biswas, Phys. E 42, 2131 (2010).
http://dx.doi.org/10.1016/j.physe.2010.04.009
http://aip.metastore.ingenta.com/content/aip/journal/apl/109/13/10.1063/1.4964120
Loading
/content/aip/journal/apl/109/13/10.1063/1.4964120
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/109/13/10.1063/1.4964120
2016-09-29
2016-12-08

Abstract

Photovoltaic power converting III–V semiconductor devices based on the Vertical Epitaxial HeteroStructure Architecture (VEHSA) design have been achieved with up to 20 thin p/n junctions (PT20). Open circuit photovoltages in excess of 23 V are measured for a continuous wave monochromatic optical input power of ∼1 W tuned in the 750 nm–875 nm wavelength range. Conversion efficiencies greater than 60% are demonstrated when the PT20 devices are measured near the peak of their spectral response. Noticeably, the PT20 structure is implemented with its narrowest ultrathin base having a thickness of only 24 nm. In the present study, the spectral response of the PT20 peaks at external quantum efficiency (EQE) of 89%/ for an input wavelength of 841 nm. We also performed a detailed analysis of the EQE dependence with temperature and for VEHSA structures realised with a varied number of p/n junctions. The systematic study reveals the correlations between the measured conversion efficiencies, the EQE behavior, and the small deviations in the implementation of the optimal designs. Furthermore, we modeled the photovoltage performance of devices designed with thinner bases. For example, we derive that the narrowest subcell of a PT60 structure would have a base as thin as 8 nm, it is expected to still generate an individual subcell photovoltage of 1.14 V, and it will begin to feature 2-dimensional quantum well effects.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/109/13/1.4964120.html;jsessionid=-6IGQT1i4KiOzQBt50BRSNGp.x-aip-live-03?itemId=/content/aip/journal/apl/109/13/10.1063/1.4964120&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/109/13/10.1063/1.4964120&pageURL=http://scitation.aip.org/content/aip/journal/apl/109/13/10.1063/1.4964120'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,