Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, J. Bozek, A. Brachmann, P. Bucksbaum, R. Coffee, F. J. Decker et al., “ First lasing and operation of an ångstrom-wavelength free-electron laser,” Nat. Photonics 4(9), 641647 (2010).
M. Rini, R. A. Tobey, N. Dean, J. Itatani, Y. Tomioka, Y. Tokura, R. W. Schoenlein, and A. Cavalleri, “ Control of the electronic phase of a manganite by mode-selective vibrational excitation,” Nature 449(7158), 7274 (2007).
D. Fausti, R. I. Tobey, N. Dean, S. Kaiser, A. Dienst, M. C. Hoffmann, S. Pyon, T. Takayama, H. Takagi, and A. Cavalleri, “ Light-induced superconductivity in a stripe-ordered cuprate,” Science 331(6014), 189191 (2011).
M. Först, C. Manzoni, S. Kaiser, Y. Tomioka, Y. Tokura, R. Merlin, and A. Cavalleri, “ Nonlinear phononics as an ultrafast route to lattice control,” Nat. Phys. 7(11), 854856 (2011).
T. A. Miller, R. W. Chhajlany, L. Tagliacozzo, B. Green, S. Kovalev, D. Prabhakaran, M. Lewenstein, M. Gensch, and S. Wall, “ Terahertz field control of in-plane orbital order in La0.5Sr1.5MnO4,” Nat. Commun. 6, 8175 (2015).
Z. R. Wu, A. S. Fisher, J. Goodfellow, M. Fuchs, D. Daranciang, M. Hogan, H. Loos, and A. Lindenberg, “ Intense terahertz pulses from SLAC electron beams using coherent transition radiation,” Rev. Sci. Instrum. 84(2), 022701 (2013).
G. Andonian, O. Williams, X. Wei, P. Niknejadi, E. Hemsing, J. B. Rosenzweig, P. Muggli, M. Babzien, M. Fedurin, K. Kusche et al., “ Resonant excitation of coherent Cerenkov radiation in dielectric lined waveguides,” Appl. Phys. Lett. 98(20), 202901 (2011).
S. Antipov, C. Jing, A. Kanareykin, J. E. Butler, V. Yakimenko, M. Fedurin, K. Kusche, and W. Gai, “ Experimental demonstration of wakefield effects in a THz planar diamond accelerating structure,” Appl. Phys. Lett. 100(13), 132910 (2012).
K. L. F. Bane and G. Stupakov, “ Terahertz radiation from a pipe with small corrugations,” Nucl. Instrum. Methods Phys. Res., Sect. A 677, 6773 (2012).
A. M. Cook, R. Tikhoplav, S. Y. Tochitsky, G. Travish, O. B. Williams, and J. B. Rosenzweig, “ Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide,” Phys. Rev. Lett. 103(9), 095003 (2009).
K. Bane, G. Stupakov, S. Antipov, M. Fedurin, K. Kusche, C. Swinson, and D. Xiang, “ Measurements of terahertz radiation generated using a metallic, corrugated pipe,” Nucl. Instrum. Methods Phys. Res., Sect. A (submitted).
G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, “ High-power terahertz radiation from relativistic electrons,” Nature 420(6912), 153156 (2002).
D. A. G. Deacon, L. R. Elias, J. M. J. Madey, G. J. Ramian, H. A. Schwettman, and T. I. Smith, “ First operation of a free-electron laser,” Phys. Rev. Lett. 38(16), 892894 (1977).
B. D. O'Shea, G. Andonian, S. K. Barber, K. L. Fitzmorris, S. Hakimi, J. Harrison, P. D. Hoang, M. J. Hogan, B. Naranjo, O. B. Williams, V. Yakimenko, and J. B. Rosenzweig, “ Observation of acceleration and deceleration in gigaelectron-volt-per-metre gradient dielectric wakefield accelerators,” Nat. Commun. 7, 12763 (2016).
J. G. Power and C. Jing, “ Temporal laser pulse shaping for RF photocathode guns: The cheap and easy way using UV birefringent crystals,” AIP Conf. Proc. 1086, 689694 (2009).
S. N. Vlasov and I. M. Orlova, “ Quasioptical transformer which transforms the waves in a waveguide having a circular cross section into a highly directional wave beam,” Radiophys. Quantum Electron. 17(1), 115119 (1974).
See for absolute terahertz power/energy meter description and manual.
CST of America, “ CST Studio Suite 2012: System assembly and modeling,” Microwave J. 54(12), 42 (2011).
V. Yakimenko, “ The Accelerator Test Facility at Brookhaven: Main Capabilities,” AIP Conf. Proc. 737, 677683 (2004).

Data & Media loading...


Article metrics loading...



We have measured an intense THz radiation produced by a sub-picosecond, relativistic electron bunch in a dielectric loaded waveguide. For efficient THz pulse extraction, the dielectric loaded waveguide end was cut at an angle. For an appropriate choice of angle cut, such antenna converts the TM mode excited in the waveguide into a free-space fundamental Gauss-Hermite mode propagating at an angle with respect to the electron beam trajectory. Simulations show that more than 95% of energy can be extracted using such a simple approach. More than 40 oscillations of about 170 ps long 0.48 THz signal were explicitly measured with an interferometer and 10 J of energy per pulse, as determined with a calorimetric energy meter, were delivered outside the electron beamline to an area suitable for THz experiments.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd