Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
R. A. Potyrailo, C. Surman, N. Nagraj, and A. Burns, “ Materials and transducers toward selective wireless gas sensing,” Chem. Rev. 111, 73157354 (2011).
M. C. Janzen, J. B. D. P. Ponder, C. K. Bailey, and K. S. Ingison Suslick, “ Colorimetric sensor arrays for volatile organic compounds,” Anal. Chem. 78, 35913600 (2006).
J. F. Fennell, Jr., S. F. Liu, J. M. Azzarelli, J. G. Weis, S. Rochat, K. A. Mirica, J. B. Ravnsbæk, and T. M. Swager, “ Nanowire chemical/biological sensors: Status and a roadmap for the future,” Angew. Chem. Int. Ed. 55, 12661281 (2016).
A. Pacquit, K. T. Lau, H. McLaughlin, J. Frisby, B. Quilty, and D. Diamond, “ Development of a volatile amine sensor for the monitoring of fish spoilage,” Talanta 69, 515520 (2006).
I. Al Bulushi, S. Poole, H. C. Deeth, and G. A. Dykes, “ Biogenic amines in fish: Roles in ıntoxication, spoilage, and nitrosamine formation—A review,” Crit. Rev. Food Sci. Nutr. 49, 369377 (2009).
I. Raible, M. Burghard, U. Schlecht, A. Yasuda, and T. Vossmeyer, “ V2O5 nanofibres: Novel gas sensors with extremely high sensitivity and selectivity to amines,” Sens. Actuators, B 106, 730735 (2005).
S. Helali, A. Abdelghania, N. Jaffrezic-Renault, P. N. Trikalitis, C. E. Efstathioud, and M. I. Prodromidise, “ On-site monitoring of fish spoilage using vanadium pentoxide xerogel modified interdigitated gold electrodes,” Electrochim. Acta 55, 42564260 (2010).
H. Huang, D. E. Gross, X. Yang, J. S. Moore, and L. Zang, “ One-step surface doping of organic nanofibers to achieve high dark conductivity and chemiresistor sensing of amines,” ACS Appl. Mater. Interfaces 5, 77047708 (2013).
M. G. Campbell, S. F. Liu, T. M. Swager, and M. Dincă, “ Chemiresistive sensor arrays from conductive 2D metal−organic frameworks,” J. Am. Chem. Soc. 137, 1378013783 (2015).
S. F. Liu, L. C. H. Moh, and T. M. Swager, “ Single-walled carbon nanotube−metalloporphyrin chemiresistive gas sensor arrays for volatile organic compounds,” Chem. Mater. 27, 35603563 (2015).
J. Hammond, B. Marquis, R. Michaels, B. Oickle, B. Segee, J. Vetelino, A. Bushway, M. E. Camire, and K. Davis-Dentici, “ A semiconduction metal-oxide array for monitoring fish freshness,” Sens. Actuators, B 84, 113122 (2002).
P. Lorwongtragool, A. Wisitsoraat, and T. Kerdcharoen, “ An electronic nose for amine detection based on polymer/SWNT-COOH nanocomposite,” J. Nanosci. Nanotechnol. 11, 1045410459 (2011).
B. P. J. de Lacy Costello, P. Evans, and N. M. Ratcliffet, “ Preparation of polypyrrole composites and the effect of volatile amines on their electrical properties,” Analyst 121, 793797 (1996).
M. Björkqvist, J. Salonen, J. Tuura, T. Jalkanen, and V.-P. Lehto, “ Detecting amine vapours with thermally carbonized porous silicon gas sensor,” Phys. Status Solidi C 6, 17691772 (2009).
T. Gao, E. S. Tillman, and N. S. Lewis, “ Detection and classification of volatile organic amines and carboxylic acids using arrays of carbon black-dendrimer composite vapor detectors,” Chem. Mater. 17, 29042911 (2005).
Y. Wang, G. A. Sotzing, and R. A. Weiss, “ Conductive polymer foams as sensors for volatile amines,” Chem. Mater. 15, 375377 (2003).
G. A. Sotzing, J. N. Phend, R. H. Grubbs, and N. S. Lewis, “ Highly sensitive detection and discrimination of biogenic amines utilizing arrays of polyaniline/carbon black composite vapor detectors,” Chem. Mater. 12, 593595 (2000).
A. W. Snow and M. G. Ancona, “ Sensitivity, selectivity, and nanodimensional effects in gold nanocluster vapor sensors,” IEEE Sens. J. 14, 33303336 (2014).
M. G. Ancona, A. W. Snow, F. K. Perkins, B. Pate, and D. Park, “ Analyte kinetics in a nanocluster-based chemiresistor: A case study,” Sens. Actuators, B 177, 936946 (2013).
A. W. Snow, M. G. Ancona, and D. Park, “ Nanodimensionally driven analyte response reversal in gold nanocluster chemiresistor sensing,” Langmuir 28, 1543815443 (2012).
I. P. Oliveri, G. Malandrino, and S. Di Bella, “ Phase transition and vapochromism in molecular assemblies of a polymorphic zinc(II) Schiff-base complex,” Inorg. Chem. 53, 97719777 (2014).
G. Consiglio, S. Failla, P. Finocchiaro, I. P. Oliveri, R. Purrello, and S. Di Bella, “ Supramolecular aggregation/deaggregation in amphiphilic dipolar Schiff-base zinc(II) complexes,” Inorg. Chem. 49, 51345142 (2010).
I. P. Oliveri and S. Di Bella, “ Sensitive fluorescent detection and Lewis basicity of aliphatic amines,” J. Phys. Chem. A 115, 1432514330 (2011).
I. P. Oliveri, G. Maccarrone, and S. Di Bella, “ A Lewis basicity scale in dichloromethane for amines and common nonprotogenic solvents using a zinc(II) Schiff-base complex as reference Lewis acid,” J. Org. Chem. 76, 88798884 (2011).
I. P. Oliveri, S. Failla, G. Malandrino, and S. Di Bella, “ Controlling the molecular self-assembly into nanofibers of amphiphilic zinc(II) salophen complexes,” J. Phys. Chem. C 117, 1533515341 (2013).
I. P. Oliveri, G. Malandrino, and S. Di Bella, “ Self-assembled nanostructures of amphiphilic zinc(II) salophen complexes: Role of the solvent on their structure and morphology,” Dalton Trans. 43, 1020810214 (2014).

Data & Media loading...


Article metrics loading...



A marked chemiresistive behavior is revealed in a nanostructured material obtained by spin-coating a solution of a bis(salycilaldiminato)Zn(II) Schiff-base (ZnSB) complex. The resulting submicron 2D network exhibits reversible changes in absorbance and resistance under the cycles of absorption and desorption of a volatile amine. These results are explained in terms of a Lewis donor-acceptor interaction between the ZnSB (acceptor) and the chemisorbed amine (donor). The 2D network of ZnSB was employed as a sensing element to fabricate a low-cost device for the volatile amines detection, showing promising results for food spoilage detection.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd