Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
M. A. Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, “ High electron mobility transistor based on a GaN-AlxGa1xN heterojunction,” Appl. Phys. Lett. 63, 1214 (1993).
T. Palacios and U. K. Mishra, “ AlGaN/GaN high electron mobility transistors,” in Nitride Semiconductor Devices: Principles and Simulation, edited by J. Piprek ( Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim, Germany, 2007).
D. C. Tsui, H. L. Stormer, and A. C. Gossard, “ Two-dimensional magnetotransport in the extreme quantum limit,” Phys. Rev. Lett. 48, 1559 (1982).
D. C. Look, E. R. Heller, Y.-F. Yao, and C. C. Yang, “ Significant mobility enhancement in extremely thin highly doped ZnO films,” Appl. Phys. Lett. 106, 152102 (2015).
D. C. Look, K. D. Leedy, L. Vines, B. G. Svensson, A. Zubiaga, F. Tuomisto, D. R. Doutt, and L. J. Brillson, “ Self-compensation in semiconductors: The Zn-vacancy in Ga-doped ZnO,” Phys. Rev. B 84, 115202 (2011).
J. Perkins, G. M. Foster, M. Myer, S. Mehra, J. M. Chauveau, A. Hierro, A. Redondo-Cubero, W. Windl, and L. J. Brillson, “ Impact of Mg content on native point defects in MgxZn1xO (0 ≤ x ≤ 0.56),” APL Mater. 3, 062801 (2015).
G. M. Foster, J. Perkins, M. Myer, S. Mehra, J. M. Chauveau, A. Hierro, A. Redondo-Cubero, W. Windl, and L. J. Brillson, “ Native point defect energies, densities, and electrostatic repulsion across (Mg, Zn)O alloys,” Phys. Status Solidi A 212, 14481454 (2015).
A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, “ First-principles study of native point defects in ZnO,” Phys. Rev. B 61, 15019 (2000).
Y. Dong, F. Tuomisto, B. G. Svensson, A. Yu. Kuznetsov, and L. J. Brillson, “ Vacancy defect and defect cluster energetics in ion-implanted ZnO,” Phys. Rev. B 81, 081201(R) (2010).
K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voight, “ Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68, 403 (1996).
H. L. Mosbacker, C. Zgrabik, A. Swain, S. El Hage, M. Hetzer, D. C. Look, G. Cantwell, J. Zhang, J. J. Song, and L. J. Brillson, “ Thermally driven defect formation and blocking layers at metal-ZnO interfaces,” Appl. Phys. Lett. 91, 072102 (2007).
T. J. Asel, H. Gao, T. J. Heinl, D. Adkins, P. M. Woodward, J. Hoffman, A. Bhattacharya, and L. J. Brillson, “ Near-nanoscale-resolved energy band structure of LaNiO3/La2/3Sr1/3MnO3/SrTiO3 heterostructures and their interfaces,” J. Vac. Sci. Technol., B 33, 04E103 (2015).
E. Burstein, “ Anomalous optical absorption limit in InSb,” Phys. Rev. 93, 632 (1954).
D. R. Doutt, S. Balaz, L. Isabella, D. C. Look, K. D. Leedy, and L. J. Brillson, “ Role of native point defects and Ga diffusion on electrical properties of degenerate Ga-doped ZnO,” Phys. Status Solidi B 250, 2114 (2013).
D. Drouin, “ CASINO a powerful simulation tool for cathodoluminescence applications,” Microsc. Microanal. 12(Suppl. 2), 15121513 (2006).
S. T. Bradley, L. J. Brillson, J. Hwang, and W. J. Schaff, “ Surface cleaning and annealing effects on Ni/AlGaN interface atomic composition and Schottky barrier height,” Appl. Phys. Lett. 85, 13681370 (2004).
T. Nakagawa, I. Sakaguchi, M. Uematsu, Y. Sato, N. Ohashi, H. Haneda, and Y. Ikuhara, “ Analysis of indium diffusion profiles based on the Fermi-level effect in single-crystal zinc oxide,” Jpn. J. Appl. Phys., Part 1 46, 4099 (2007).

Data & Media loading...


Article metrics loading...



Due to a strong Fermi-level mismatch, about 10% of the electrons in a 5-nm-thick highly Ga-doped ZnO (GZO) layer grown by molecular beam epitaxy at 250 °C on an undoped ZnO buffer layer transfer to the ZnO (Debye leakage), causing the measured Hall-effect mobility) of the GZO/ZnO combination to remarkably increase from 34 cm2/V s, in thick GZO, to 64 cm2/V s. From previous characterization of the GZO, it is known that N = [Ga] = 1.04 × 1021 and N = [V] = 1.03 × 1020 cm−3, where N, N, and [V] are the donor, acceptor, and Zn-vacancy concentrations, respectively. In the ZnO, N = 3.04 × 1019 and N = 8.10 × 1018 cm−3. Assuming the interface is abrupt, theory predicts μ = 61 cm2/V s, with no adjustable parameters. The assumption of abruptness in [Ga] and [V] profiles is confirmed directly with a differential form of depth-resolved cathodoluminescence spectroscopy coupled with X-ray photoelectron spectroscopy. An anneal in Ar at 500 °C for 10 min somewhat broadens the profiles but causes no appreciable degradation in μ and other electrical properties.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd