Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
L. Sang, M. Liao, and M. Sumiya, Sensors 13, 10482 (2013).
A. Janotti and C. G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009).
X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, and R. Liu, Sci. Rep. 4, 4596 (2014).
E. G. Barbagiovanni, R. Reitano, G. Franzò, V. Strano, A. Terrasi, and S. Mirabella, Nanoscale 8, 995 (2016).
C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, Nano Lett. 7, 1003 (2007).
A. Klini, S. Pissadakis, R. N. Das, E. P. Giannelis, S. H. Anastasiadis, and D. Anglos, J. Phys. Chem. C 119, 623 (2015).
S. Anantachaisilp, S. M. Smith, C. Ton-That, T. Osotchan, A. R. Moon, and M. R. Phillips, J. Phys. Chem. C 118, 27150 (2014).
M. R. Alenezi, A. S. Alshammari, K. D. G. I. Jayawardena, M. J. Beliatis, S. J. Henley, and S. R. P. Silva, J. Phys. Chem. C 117, 17850 (2013).
A. Menzel, K. Subannajui, F. Güder, D. Moser, O. Paul, and M. Zacharias, Adv. Funct. Mater. 21, 4342 (2011).
A. Kushwaha and M. Aslam, J. Appl. Phys. 112, 054316 (2012).
A. J. Gimenez, J. M. Y. nez Limón, and J. M. Seminario, J. Phys. Chem. C 115, 282 (2011).
M. R. Alenezi, S. J. Henley, and S. R. P. Silva, Sci. Rep. 5, 8516 (2015).
E. G. Barbagiovanni, V. Strano, G. Franzò, I. Crupi, and S. Mirabella, Appl. Phys. Lett. 106, 093108 (2015).
F. Fabbri, M. Villani, A. Catellani, A. Calzolari, G. Cicero, D. Calestani, G. Calestani, A. Zappettini, B. Dierre, T. Sekiguchi, and G. Salviati, Sci. Rep. 4, 5158 (2014).
R. Gurwitz, R. Cohen, and I. Shalish, J. Appl. Phys. 115, 033701 (2014).
A. Janotti and C. G. Van de Walle, Phys. Rev. B 76, 165202 (2007).
K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisić, C. C. Ling, C. D. Beling, S. Fung, W. M. Kwok, W. K. Chan, D. L. Phillips, L. Ding, and W. K. Ge, J. Phys. Chem. B 110, 20865 (2006).
M. Willander, O. Nur, J. R. Sadaf, M. I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, and I. Hussain, Materials 3, 2643 (2010).
V. Strano, R. G. Urso, M. Scuderi, K. O. Iwu, F. Simone, E. Ciliberto, C. Spinella, and S. Mirabella, J. Phys. Chem. C 118, 28189 (2014).
T. Tite, C. J. Lee, and Y. M. Chang, J. Appl. Phys. 108, 033504 (2010).
H. Y. Chen, H. W. Lin, C. H. Shen, and S. Gwo, Appl. Phys. Lett. 89, 243105 (2006).

Data & Media loading...


Article metrics loading...



The UV sensing properties of ZnO nanorods (NRs) fabricated by a chemical bath deposition using two different hexamethylenetetramine (HMTA) concentrations, 25 mM and 50 mM, are studied in this work. The NRs are investigated by scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy, and photoconductivity measurements. The SEM images indicate that 25 mM HMTA NRs exhibit merging that increases the growth induced defects in this sample with respect to the 50 mM sample. PL measurements demonstrate a higher optical transition from the doubly ionized Zn vacancy () at 2.52 eV in the 50 mM ZnO NRs due to the reduced growth defect density. The photoconductivity measurements indicate better sensitivity and spectral selectivity in the 50 mM NRs, which we present as a result of the state. These results are summarised with a UV sensing model based on the optical properties of ZnO NRs, which provides a route for the development of improved sensors.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd